

D3.1 	
 -­‐ 	
 AVAILABLE 	

METHODS, 	
 TOOLS 	
 AND	

MECHANISMS	

Grant Agreement 676547
Project Acronym CoeGSS
Project Title Centre of Excellence for Global Systems

Science
Topic EINFRA-5-2015
Project website http://www.coegss-project.eu
Start Date of project October 1, 2015
Duration 36 months
Due date 31 January 2016
Dissemination level Public
Nature Report
Version 1.0
Work Package WP3
Leading Partner PSNC (Marcin Lawenda)

Authors
Eva Richter, Wolfgang Schotte, Cezar
Ionescu, Ralf Schneider, Devdatt
Dubhasi, Marcin Lawenda

Internal Reviewers E. Richter , B. Koller, J. Nieto
Keywords Methods and tools for GSS, DSL,
Total number of pages: 82

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

2

Copyright (c) 2016 Members of the CoeGSS Project.

The CoeGSS (“Centre of Excellence for Global Systems Science”) project is
funded by the European Union. For more information on the project
please see the website http:// http://coegss-project.eu/

The information contained in this document represents the views of the CoeGSS as of
the date they are published. The CoeGSS does not guarantee that any information
contained herein is error-free, or up to date.

THE CoeGSS MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY
PUBLISHING THIS DOCUMENT.

Version History

 Name Partner Date

From Marcin Lawenda PSNC 20.10.2015

First Version

Eva Richter, Wolfgang Schotte,
Cezar Ionescu, Ralf Schneider,

Marcin Lawenda

UP, USTUTT-
HLRS,

CHALMERS,
PSNC

25.11.2015

Second Version

Eva Richter, Wolfgang Schotte,
Cezar Ionescu, Ralf Schneider,

Devdatt Dubhasi, Marcin Lawenda

UP, USTUTT-
HLRS,

CHALMERS,
PSNC

7.01.2016

Reviewed by B. Koller, J. Nieto and E. Richter as
consolidator

UP, USTUTT-
HLRS, ATOS

25.01.2016

Approved by ECM Board UP 31.01.2016

	

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

3

Abstract	

This deliverable provides an evaluation of available methods, tools and mechanisms
which can be integrated off-the-shelf within the Centre of Excellence for Global Systems
Science. GSS simulations are processes which consist of many stages like data
acquiring and storing, data interpretation and analysis, computation and visualisation.
In each stage a whole set of techniques and tools is needed to provide automated and
reliable processing. We start with the analysis of efficient data management software
and solutions used for fault tolerance. The next chapter introduces the reader into the
world of remote and immersive visualisation systems potentially used within the
project to explore, investigate and analyse GSS related data. Then, we present a brief
evaluation of available software for creating and running GSS synthetic populations,
and for designing and implementing domain-specific languages (DSLs). In the following
chapter we present type theoretical concepts that could be used to represent different
kinds of uncertainty including a short overview of existing implementations.
Subsequently a short introduction about the co-design approach in contrast to the
classical design approach is given.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

4

Table	
 of	
 Contents	

Abstract ... 3	

Table of Contents ... 4	

1.	
 Introduction ... 5	

2.	
 Data management and fault tolerance .. 7	

3.	
 Remote and immersive visualization systems .. 19	

4.	
 Methods, tools and mechanisms for GSS and building DSLs 37	

5.	
 Type theoretical approaches to the representation of uncertainty 50	

6.	
 Hardware and software co-design ... 58	

7.	
 Summary .. 73	

References .. 74	

List of tables ... 81	

List of figures .. 81	

List of Abbreviations .. 82	

 	

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

5

1. Introduction	

The definition of Global Systems Science (GSS) is related to systems struggling with the
complex problems of global reach. The most popular examples of GSS deal with
energy, water and food supply systems, global financial and city systems and globally
spreading diseases. In the CoeGSS project we are mostly focused on three domains:
Health Habits (the global diffusion of health-relevant habits such as smoking,
overeating or physical exercise), Green Growth (the possibility of green growth, i.e.
increased well-being in the economic, ecologic and social dimension, investigating the
diffusion of initiatives such as feed-in tariffs, green business strategies) and Global
Urbanisation (systemic impact of infrastructure decisions on key urban performance
indicators such as congestion, real estate prices and emissions).

All our use cases share a similar data flow where we can distinguish the same basic
operations. We start from gathering data of different kind and origin. These data are
described by other metadata which explain and complement their meaning. Next, data
and metadata must be stored into a data management system which becomes a
source of input for the processing systems. Relations between the data are described
by a Domain Specific Language (DSL), which next builds a synthetic population and
action patterns for the modelling systems. After running the simulations, the output
data are sent to visualisation systems and presented in human-friendly way. A portal
is used as a user interface for controlling and monitoring the whole process. Based on
this general scenario we can develop a framework to generate customized synthetic
populations for GSS applications.

This short description presents the complexity of the whole system. There are many
parts which combined together should provide the desired functionality and efficient
data processing.

Due to the global nature of our problem domains we can expect the analysis of huge
datasets which on the one hand needs sophisticated data management systems and,
on the other hand, significant computational power (HPC) to process this data
efficiently. After running the simulations CoeGSS should provide its customers with
detailed analyses, including real-time assessments, of global risks and opportunities.

The work on the presented scenarios (pilots) is the task of work package 4. A detailed
description of the pilots is contained in deliverable D4.1. In WP3 we are taking
requirements of the pilots and use them as drivers for realization of services which are
then embedded into the service portfolio offered e.g. via the portal implemented in
WP5.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

6

The main goal of this deliverable is to present the state-of the-art and an evaluation of
available methods, tools and mechanisms which can be integrated off-the-shelf within
CoeGSS, to act as a baseline for future developments.

In chapter 3 we discuss tools which can be used for both efficient data management
and maintenance of fault tolerance. Chapter 4 is devoted to remote and immersive
visualisation systems potentially used within the project to explore, investigate and
analyse GSS related data. Data types and data structures used within typical
applications as well as addressed visualisation methods and practices will be
summarized to identify an evaluation matrix. Chapter 5 presents a brief evaluation of
available software for creating and running GSS synthetic populations, and for
designing and implementing domain-specific languages (DSLs). Chapter 6 describes
the monadic representation of different kinds of uncertainty and gives a short overview
of existing implementations. Chapter 7 will first of all give a short introduction to the
co-design approach in contrast to the classical design approach. Chapter 8 gives a short
summary of the content.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

7

2. Data	
 management	
 and	
 fault	
 tolerance	

2.1 Introduction	
 	

GSS domains such as urban futures, green growth and global health are centrally data
driven today with data generated in extremely high volumes. Data analytics are
applicable to all such areas of science, engineering and innovation: they enable
researchers to understand nuanced predictions, as well as shape policies and
strategies more efficient and impactful. "Big data," machine learning, and predictive
data analytics have been hailed as the fourth paradigm of science, allowing researchers
to extract insights from both real world data and computational simulations. Machine
learning has yielded new insights into health risks and the spread of disease via
analysis of social networks, Web-search queries, and hospital data. It is also key to
event identification and correlation in domains as diverse as energy modelling, human
health and urban futures.

As we already mentioned, processing of GSS scenarios is related to computation of
very huge sets of data. Moreover, we can expect a tremendous growth of the amount
of data as well as their heterogeneity – taking into account different data sources, e.g.
data streams from social media. It drives us to two main problems which should be
solved in the proposed GSS framework: efficient data management and reliable
computation.

Raw data in GSS are related with accompanying data (metadata) which provides more
information about the meaning and validity of the provided numbers. That is why the
process of gathering and storing of source information should include schemes which
take into consideration all aspects of data. This schemes must facilitate the process of
exploring data like: searching, comparing, combining, duplicating etc.

Data management systems used for GSS scenarios should have the functionality to
store metadata according assumed schemes and the ability to provide huge numbers
of data for processing without disrupting of (fast enough) computations. Computations
(even within one scenario) can be executed on work nodes placed in different locations.
In this situation a data management system should ensure that all necessary data will
be located in the nearest location. Another situation when efficient data movement is
crucial is situation when for some reasons (e.g. system crash) computations need to be
relocated to another physical localisation. All input data should be moved to the best
possible location right behind rerun tasks.

The High Performance Data Analysis (HPDA) services are designed for an emerging
market (e.g. financial services, manufacturing, on-line retailers, telecommunications

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

8

and healthcare/bioinformatics, energy) where simulation-based and analytics-based
data analysis are complex enough to require the use of High Performance Computing
(HPC) methods and resources.

Big Data describes a new generation of technologies and architectures designed to
economically extract value from vary large volumes of a wide variety of data by
enabling high velocity capture, discovery and analysis.

BIG DATA = Volume + Velocity + Variety

Crashes of computational systems happen with unspecified frequency and it must be
assumed that they will also occur in our situation. Growing power of contemporary
HPC clusters and their complexity causes a reduction of Mean Time Between Failures
(MTBF). If response time of our services is important (usually is) we need to assure that
in the case of failure a part or the whole of the computation could be completed on an
alternative resource. As data analytics becomes more mission critical besides HPDA
services also fault tolerance methodologies are becoming increasingly significant. In
order to avoid very negative effects of these situations like the necessity of restarting
a whole computation process from the beginning, waste of time and energy, the GSS
processing should assume different scenarios of emergency circumstances.

Therefore, we can consider the main requirements for enabling HPDA are:

• Data movement appliance, geared towards end users, via NFS & CIFS
• Minimize admin responsibility
• Scalable, Highly Available, Load - balanced
• Proactive data management
• Ease to use - GUI-driven
• Enables automated end-to-end workflows (CLI)
• Role-based authentication (NIS & LDAP)
• Data mining, Audit history, etc.
• Export high performance file system e.g. Lustre

Below we discuss methods, techniques and implementations for efficient [1] data
storage and movement as well as for fault tolerance management.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

9

2.2 Data	
 movement	
 	

It is assumed that about 90% of currently available data was generated in the last two
years [2]. The number of data, which systems need to tackle with, is growing
exponentially, it also relates to GSS systems. HPC data management systems
manipulate very large amount of data by storing it on different levels of hierarchical
storage (scratch disk, array disks, tapes).

Optimization of access to local file system can be achieved by optimization of I/O calls.
In many cases it is made by parallelization of disk access operations. It is especially
effective in situations when multiple processes try to read the same space on disk.

Another method of optimization is prediction. The system tries to predict which data
will be required in the near future and load it into the memory in advance. Sometimes
serval different scenarios are realized in parallel, that increases the probability that one
will come true. This solution is often used by tape storage systems where time access
to data is the longest.

2.2.1 Transmission	
 protocol	

The access to a big amount of data needs an efficient transmission protocol. Currently
most of the tools responsible for data movement rely on TCP (based on sockets), whose
flow is limited to 20Gbps. One way out is to use RDMA over Converged Ethernet (RoCE)
[3]. This new network protocol used in high performed data movement allows remote
direct memory access (RDMA) over an Ethernet network and reduces the CPU load.
RoCE based solutions allows to use effectively several dozens of Gbps bandwidth using
less CPU power.

2.2.2 Hierarchical	
 Storage	
 System	
 	

It is a common solution to use meta data in GSS systems in combination with a
Hierarchical Storage System (HSS). In order to do it effectively we should access
properly what level of meta data is used: performance, program or application.

In performance level I/O calls and prediction of data usage methods are used. Program
level allows to implement easy to use interfaces for data access. This solution needs a
description of the data structures which are used in applications, the location of the
files, the offset of records within files. Finally, in the application approach programs are
described by additional information like: time of run and arguments, execution
environment, timing and results summary. All this information is used to elaborate
application running pattern and predict which data could be needed. In order to find
this pattern, we can use different solutions, the most popular is based on hints
provided by the user and historical logs. In the first option the user may determine if

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

10

data will be accessed by in temporal or spatial contiguity. By analysing historical logs
the system can build patterns of data access which contain information about array of
other files which with high probability can be accessed right after a given file.

2.3 Data	
 management	
 solutions	
 	

2.3.1 Hadoop	

The Apache Hadoop [4] software library is a framework that allows for the distributed
processing of large data sets across clusters of computers using simple programming
models. Hadoop system was designed to automatically handle hardware failures. It
allows storing distributed data sets with particular emphasis on computer clusters
(scale up to hundreds or thousands of machines). Hadoop deals very well in situations
when no data relationships exist and they are diverse in the nature. It contains the
following main modules: Hadoop Common, Hadoop Distributed File System, Hadoop
YARN, Hadoop MapReduce.

The Lustre [5] is a parallel file system that facilitates HPC simulation environments in
many ways. Lustre is providing computer clusters with efficient storage and very fast
access to large data sets. It uses object based disks for storage and metadata servers
for storing file system metadata Lustre allows to distribute very big files across many
cluster nodes and uses a global name space. It is distributed under an open-source
license.

Lustre and Hadoop together permit to solve problems related with big data, harness
the HPC power on very fast storage. However, there are also some disadvantages. The
first of them is the overhead generated by HTTP calls during requiring data access by
Hadoop File System. The second disadvantage is the requirement for each Hadoop
node to ensure a large local storage.

One of the solutions for this problem is using the Intel Enterprise Edition for Lustre
which provides a special adapter to overcome those drawbacks by implementing
Lustre direct access meanwhile computations of the MapReduce.

2.3.1.1 MapReduce	

The MapReduce programming paradigm breaks processing into two basic phases: a
map phase and a reduce phase. The input and output of each phase are key-value
pairs. The work is distributed across a set of parallel processors and executes smaller
queries (mappers), then merging (reducing) phase coming that get data back together
to return the full dataset.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

11

2.3.1.2 Tez	

Tez1 is an application framework which allows for a complex directed-acyclic-graph of
tasks for processing data and is built atop Apache Hadoop YARN.

2.3.1.3 Pig	
 ETL	
 abstraction	

Pig ETL abstraction2 - ETL jobs are written in a Pig-specific workflow language called
Pig Latin, get compiled for execution by an underlying execution engine such as
MapReduce.

2.3.1.4 Apache	
 SAMOA	
 	

Apache SAMOA3 is a distributed streaming machine learning (ML) framework that
contains a programing abstraction for distributed streaming ML algorithms. Apache
SAMOA enables the development of new ML algorithms without directly dealing with
the complexity of the underlying distributed stream processing engines (DSPEe, such
as Apache Storm, Apache S4, and Apache Samza).

2.3.1.5 Giraph	

Giraph4 is an open source implementation of Google’s Pregel. From the ground up,
Giraph is built for graph processing. Apache Giraph is an iterative graph processing
system built for high scalability.

2.3.1.6 Storm	
 Stream	

Storm Stream 5 processing Storm has many use cases: real-time analytics, online
machine learning, continuous computation, distributed RPC, ETL, and more. A Storm
topology consumes streams of data and processes those streams in arbitrarily
complex ways, However, a repartitioning the streams between each stage of the
computation is needed.

2.3.1.7 Apache	
 Spark	

Can replace MapReduce, Spark 6 offers SQL, graph processing (GraphX), machine
learning algorithms implementation (MLib) and streaming frameworks. It provides a

1 http://tez.apache.org/
2 https://pig.apache.org/
3 http://samoa.incubator.apache.org/
4 http://giraph.apache.org/
5 http://storm.apache.org/
6 http://spark.apache.org/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

12

simple programming model for varied range of applications and allows execute
programs dozen times faster than Hadoop MapReduce. Developers are able to create
complicated data flows e.g. directed acyclic graph. Spark supports sharing of data
which are located in memory so in this way parallel tasks can operate on the same data
set.

2.3.1.8 Flink	

The general engine Apache Flink7 is an open source platform for distributed stream
and batch data processing. Flink offers Table API, graph processing (Gelly), machine
learning algorithms implementation (FlinkML). It has dedicated support for iterative
computations.

2.3.2 MongoDB	

MongoDB8 stores data as documents in a binary representation called BSON (Binary
JSON). Documents that share a similar structure are typically organized as collections.

2.3.3 HBase	

HBase9 - it is a distributed, versioned, non-relational database modelled after
Google's Bigtable.

2.3.4 Apache	
 Cassandra	

Apache Cassandra 10 , a top level Apache project born at Facebook and built on
Amazon’s Dynamo and Google’s BigTable, is a distributed database for managing large
amounts of structured data across many commodity servers.

2.3.5 Amazon	
 DynamoDB	
 	

Amazon DynamoDB11 is a fast and flexible NoSQL database service for all applications
that need consistent, single-digit millisecond latency at any scale. It is a fully managed
cloud database and supports both document and key-value store models.

7 https://flink.apache.org/
8 https://www.mongodb.com
9 https://hbase.apache.org/
10 http://cassandra.apache.org/
11 https://aws.amazon.com/dynamodb/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

13

2.3.6 Neo4j	
 	

Neo4j12 is a graph database implemented in Java and accessible from software written
in other languages using the Cypher query language through a transactional HTTP
endpoint. The developers describe Neo4j as an ACID-compliant transactional database
with native graph storage and processing.

2.3.7 S2Graph	

S2Graph13 is a distributed and scalable OLTP graph database built on Apache HBase to
support fast traversal of extremely large graphs.

2.3.8 Apache	
 Flume	

Apache Flume14 is a distributed, reliable, and available system for efficiently collecting,
aggregating and moving large amounts of log data from many different sources to a
centralized data store. The use of Apache Flume is not only restricted to log data
aggregation. Since data sources are customizable, Flume can be used to transport
massive quantities of event data including but not limited to network traffic data,
social-media-generated data, email messages and pretty much any data source
possible. The use of Flume within VElaSSCo will focus on providing the required
pipelines to process simulation created data, in order to split it efficiently in several
pieces that will be eventually stored in a NoSQL database, in a predefined schema. To
do so, one of the requirements on VELaSSCo is creating one or multiple agents with
Flume to synchronize on HBase repository. To do so, the pipelines are provided after
multiplexing channels for agent. This is the case when we want to use the same agent
over different channels to communicate between sources and sinks like in Figure
below.

12 http://neo4j.com/
13 https://steamshon.gitbooks.io/s2graph-book/content/
14 https://flume.apache.org/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

14

Figure 1. Using the same agent over different channels to communicate
sources

Therefore, the Event Manager used is Flume, so the pipelines are created multiplexing
different channels for the same agent, assigning different ports for each pipeline. The
figure below represents the pipelines within the event manager.

Figure 2. Flume Event Manager pipelines

2.3.9 NoSQL	
 databases	

NoSQL databases use other data models than the relational model known from the
SQL world and do not necessarily adhere to transactional ACID properties. These
models often sacrifice consistency and offer low level, non-standardized query
interfaces that makes them harder to integrate in existing applications that expect an

 Flume Event Manager

 p

M

Channel1 HBaseSink1

HBaseSink2

HBaseSinkN

 Data
Source2

SourceN

Channel2

ChannelN

Port1

PortN

Source1

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

15

SQL interface. However, these models provide a very good and efficient way of
representing and storing data suitable for big data applications.

2.3.9.1 Key-­‐value	
 stores	

Key-value stores allow the storage of data in a schema-less way. Data objects can be
completely unstructured or structured and are accessed by a single key. As no schema
is used it is not even necessary that data objects share the same structure. Examples
of key-value stores are CouchDB 15 , Oracle NoSQL Database 16 , Dynamo 17 ,
FoundationDB 18 , HyperDex 19 , MemcacheDB 20 , Redis 21 , Riak 22 , FairCom c-treeACE 23 ,
Aerospike24, OrientDB25 or MUMPS26.

2.3.9.2 Columnar	
 stores	

Sometimes columnar stores are also called Big Table clones referring to Google’s
implementation of a columnar store. Such databases are typically sparse, distributed
and persistent multi-dimensional sorted map in which data is indexed by a triple of a
row key, column key and a timestamp. Examples are HBase27, Cassandra28, Accumulo29,
Druid30 or Vertica31.

2.3.9.3 Document	
 databases	

In contrast to the values in a key-value store, documents are structured. However,
there is no requirement for a common schema that all documents must adhere to
comparable to records in relational database. Thus document databases are referred
to storing semi-structured data. Common encodings include XML or JSON. Examples

15 http://couchdb.apache.org/
16 http://www.oracle.com/us/products/database/nosql/overview/index.html
17 https://en.wikipedia.org/wiki/Dynamo_%28storage_system%29
18 http://www.foundationdb.com/
19 http://hyperdex.org/
20 http://memcachedb.org/
21 http://redis.io/
22 http://basho.com/products/
23 http://www.faircom.com/
24 http://www.aerospike.com/
25 http://orientdb.com/orientdb/
26 http://www.faqs.org/faqs/m-technology-faq/
27 https://hbase.apache.org/
28 http://cassandra.apache.org/
29 https://accumulo.apache.org/
30 http://druid.io/
31 https://www.vertica.com/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

16

are MongoDB 32 , Apache CouchDB, Couchbase 33 , DocumentDB 34 , HyperDex, Lotus
Notes, MarkLogic35, Clusterpoint36, OrientDB or Qizx37.

2.3.9.4 Graph	
 databases	

Graph databases store data in graph structures making them suitable for storing highly
associative data such as social network graphs. Examples are Neo4J 38 ,
InfiniteGraph39, OrientDB or Stardog40. A particular flavour of graph databases are
triple stores such as AllegroGraph41, Virtuoso42 or GraphDB43 that are specifically
designed to store RDF triples and can be used for semantic reasoning.

2.4 HPC	
 fault	
 tolerance	
 	

GSS systems perform complex and lengthy calculations where the risk of crash of the
computational system is significant. Fault tolerance (FT) systems should prevent from
interfering with operations in case of hardware and operating system failures. This
solution is primarily intended for high-availability or life-critical systems. Fault tolerance
allows to prevent partial results and restart (from previously saved snapshot)
computation later saving already consumed energy and time.

Fault tolerance is also important from energy consumption point of view. Today’s HPC
systems consume huge amounts of energy which is wasted in case of a system fail.

2.4.1 Fault	
 tolerance	
 techniques	

There are several fault tolerance techniques [6] well known and used in HPC solutions.
The most important are the ones described below.

2.4.1.1 Checkpointing	
 	

Saving the current status of the process is made by the system. When a task fails,
instead of initiating from beginning it is restarted from the recently checked pointed
state. The process of checkpointing is carried out periodically i.e., checkpoints are kept

32 https://www.mongodb.org/
33 http://www.couchbase.com/
34 https://azure.microsoft.com/en-us/services/documentdb/
35 http://www.marklogic.com/
36 https://www.clusterpoint.com/
37 https://www.qualcomm.com/qizx
38 http://neo4j.com/
39 http://www.objectivity.com/products/infinitegraph/
40 http://stardog.com/
41 http://franz.com/agraph/allegrograph/
42 http://semanticweb.org/wiki/Virtuoso
43 http://ontotext.com/products/graphdb/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

17

and process is executed from the recently saved state, once the system governs the
fault.

2.4.1.2 Replication	

For effective execution several replicas (copies) of tasks are created and run on
different resources. There are several different types of replication schemes e.g.: Active
Replication, Semi-Active Replication and Passive Replication. Exemplary tools which can
be used for the implementation of task replication are: Amazon EC2, Hadoop, HA-
Proxy.

2.4.1.3 Resource	
 co-­‐allocation	
 	

This technique allows to allocate resources for further executions of a task. The
allocation is made automatically depending on the properties as workload, type of task,
capacity, energy awareness, etc.

2.4.1.4 Job	
 Migration	

Migration is performed if a machine fails and further execution there is not possible.
The task is migrated to a working machine using a HA-Proxy. Specialized algorithms
automatically determine the fault and migrate batch applications within multiple
datacentres.

2.4.1.5 Task	
 Resubmission	

In the situation when a task fail is detected, it is resubmitted to different working
resources for re-execution and new work is assigned by a job distribution algorithm.

2.4.1.6 Timing	
 Check	
 	

This technique keeps track of the task execution. Depending on whether the task has
been completed in the required amount of time or not further action for fault tolerance
is taken.

2.4.1.7 Rescue	
 workflow	
 	

The execution of the whole process is divided into chunks and represented as a
workflow. Each step is after another until it becomes impossible – moving forward
needs repairing of the failed task.

2.4.1.8 User	
 defined	
 	

In the case of fault, the action to be performed is defined by the user. When unexpected
situations happen a special procedure is executed.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

18

2.4.2 Fault	
 tolerance	
 implementations	

Some of the most popular implementations of the fault tolerance systems are
described below. Many other, not mentioned in this ranking, are problem-specific
solutions designed for individual software and taking into consideration its specifics.

2.4.2.1 SWIFT	

Software Implemented Fault Tolerance [7] (SWIFT), by integration with compilers,
provides protection by control-flow checking mechanism. In this technic validation
points are not needed any more what results in an increase of performance (ca. 14%
comparing to singled-threaded approach). It exploits unused instruction-level
parallelism resources present in the execution of most programs to efficiently manage
fault detection.

2.4.2.2 Berkeley	
 Lab	
 Checkpoint/Restart	

This implementation combines user and kernel level of checkpointing for a wide range
of applications. Very interesting is that BLCR [8] does not require changes to be made
into application code. The main focus is on parallel applications that communicate
through MPI. Project covers the following areas: Checkpoint/Restart for Linux (CR),
Checkpointable MPI Libraries, Resource Management Interface to Checkpoint/Restart,
Development of Process Management Interfaces.

2.4.2.3 Fault	
 Tolerance	
 Interface	

Fault Tolerance Interface (FTI) [9] is a library that aims to provide application-level
checkpointing to computational scientists with convenient way to perform restart in a
scalable fashion. In order to improve efficiency and avoid space, time and energy waste
it allows to select data which are protected by direct data interface. It is also possible
to assign one process per node to overlap scientific computation and fault tolerance
workload, then post-checkpoint job is executed asynchronously.

2.4.2.4 Distributed	
 MultiThreaded	
 Checkpointing	

Distributed MultiThreaded Checkpointing (DMTCP) [10] is another tool which does not
require modification of the user's application. Checkpointing can be made on multiple
machines for specified group of socket connected applications. DMTCP is supporting
the following programming languages: Python, Perl and Open MPI. It supports the
OFED API for InfiniBand on an experimental basis. DMTCP facilitates checkpointing of
a wide range of Linux functionality like: signal handlers, process id, pipes, sockets, open
file descriptors and many others.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

19

3. Remote	
 and	
 immersive	
 visualization	
 systems	

The following chapter will give a brief introduction to remote and immersive
visualisation systems potentially used within the project to explore, investigate and
analyse GSS related data. Data types and data structures as used within typical
applications by the consortium as well as addressed visualisation methods and
practices will be summarized to identify an evaluation matrix. This will allow a
comparison of listed visualisation systems and identify further visualisation
functionality, which has to be added or implemented within the project.

3.1 Introduction	

GSS simulations provide huge amounts of complex data. A lot of work has previously
done on the visualization of large 3D data coming from measurements as well as
numerical simulations and there is a growing field of multidimensional and “Big Data”,
mainly in 2D. However, there is still a major gap to fill: how can we immerse analysts in
the data in order to provide more natural ways for data exploration, data analysis and
collaboration?

Driven by the entertainment industry, tools and methods like voice- and gesture-based
control, multi-touch devices, tiled displays as well as 3D VR and AR visualisation are
becoming more and more part of everyday life. In response to these new technologies,
we propose the development of “Immersive Analytics Environments”. The
environments we envision should be usable by experts and analysts to help in the
detailed analysis of complex data sets, but will also be accessible to decision makers
and politicians who spend more time working face-to-face than in front of a desktop
computer, and to the everyday public in order to better involve them in the decision
making processes.

Not all display hardware is equally suited for all types of data analysis. Whereas CAVEs
are most effective in the display of complex 3D data, large high resolution tiled displays
are better suited for huge amounts of 2D data. Similar is true for multi-touch displays,
tangible interfaces, touch tables, tablets or HMDs. All have their special application
field. In our Environment, we want to combine a multitude of different visualization
and interaction devices in one seamless working environment and still allow access to
large scale HPC and Data Storage systems.

Within the project the focus is to provide remote and immersive visualization to the
consortium partners, to develop remote visualization services in order to provide
interactive access to HPC and Visualization resources, to integrate 2D and 3D
visualization systems in a seamless manner in order to create “Immersive Analytics

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

20

Environments” as well as to develop immersive visualization methods for huge
statistical and multidimensional datasets.

3.2 Requirements	

The following paragraphs will give a survey of project relevant requirements as they
could be defined by the consortium so far. It is obvious, that within the early stage of
the project, various requirements are given sketchy. So criteria evaluating remote and
immersive visualisation systems focus primarily on availability and expandability of
relevant features and software modules. More general features of visualisation
systems, like hardware requirements or rendering features for instance, are not listed.

General requirements

• The GSS synthetic population simulations will be the main tool used in CoeGSS,
in particular, within the pilot projects (see 6.2). Used simulation systems should
be capable to read these types of data or provide an interface to the software
being used.

• The visualisation system should not only provide tools for analysing and
interpreting the resulting data, but should also assist during design phases and
provide visualisation while the simulation is running.

Visualisation methods

• The visualisation system should provide methods to process huge and varying
volumes of unstructured data in GSS.

• The visualisation system should provide methods for additional data
management.

• The visualisation system should provide or interface to high performance data
analysis tools.

Data types

• Results from simulation and analytics
• Structured and unstructured data
• Regular and irregular patterns (lists, matrices, graphs)
• GSS Models
• Incomplete information
• Inventory and classification of validated numerical methods useful for

generating synthetic populations, especially type theoretical approaches for
interval based computations.

Requirements for rendering environments

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

21

• 3D virtual environments like CAVEs or a Powerwall
• 2D Desktop

Interfaces to specific tools

• Hadoop (see 3.3)

For classification and evaluation of relevant visualisation systems, we will use the
following list of criteria:

• data processing capability

The visualisation system should be capable to process the data in a way, so
that data sets could be investigate from various viewing directions or in
different arrangements for instance. This will support analysing and
interpreting capabilities for the project.

• I/O modules / general expandability

The visualisation system should be capable to interface external software
systems and to import data sets from these systems. A common approach
is to provide a set of reader or import modules like ReadCSV for instance,
which interprets the output of the simulation systems and provides an assisted
processing for visualisation.

• API

The software system should provide an API, which enables the user to modify
and extend functionality, to read or process data in a specific way as well as to
enable batch processing of huge data sets.

• license / availability

The software should be available to the consortium and currently being
maintained.

• supported hardware environments

The visualisation software should be capable to run on all common platforms
(Microsoft Windows, Mac OS X, Linux). The visualisation software should
support local 2D rendering and interaction on common workstation displays
as well as 3D rendering and interaction for virtual reality environments like
powerwalls and CAVEs [11].

• remote visualisation

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

22

The visualisation software should support remote rendering / visualisation, so
that the visualisation software can be used on remote workstations or
compute / rendering clusters as well as on high performance computing
resources. It should provide capability to interface web based access to the
visualisation.

3.3 Remote	
 and	
 immersive	
 visualisation	
 systems	

The following paragraphs will give a survey of remote and immersive visualisation
systems which are currently available and potentially relevant for the project.

3.3.1 The	
 Chromium	
 Project	

Chromium [12] is a system for interactive rendering on clusters of graphics
workstations. Various parallel rendering techniques such as sort-first and sort-last may
be implemented with Chromium. Furthermore, Chromium allows filtering and
manipulation of OpenGL command streams for non-invasive rendering algorithms.

Figure 3. The Chromium Project

Functionality

Among Chromium's features are

• Sort-first (tiled) rendering - the frame buffer is subdivided into rectangular tiles
which may be rendered in parallel by the hosts of a rendering cluster.

• Sort-last (Z-compositing) rendering - the 3D dataset is broken into N parts
which are rendered in parallel by N processors. The resulting images are
composited together according to their Z buffers to form the final image.

• Hybrid parallel rendering - sort-first and sort-last rendering may be combined
into a hybrid configuration.

• OpenGL command stream filtering - OpenGL command streams may be
intercepted and modified by a stream processing unit (SPU) to implement non-
photorealistic rendering (NPR) effects, etc. Here's an interesting example.

• Many OpenGL programs can be used with Chromium without modification.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

23

• One can write Chromium-specific applications which perform parallel
rendering with the aid of special synchronization primitives.

Chromium is derived from the WireGL project44.

Platform / Support

• Microsoft Windows, Linux, IRIX

Programming language / API

• Python, C

License

• BSD License
• The Chromium Project is available open source, but is no longer updated or

maintained. The project is frozen since January 201545.

Organisation / Main Contributors

• Standford Computer Graphics Laboratory46

3.3.2 COVISE	
 /	
 OpenCOVER	

COVISE [13] stands for COllaborative VIsualization and Simulation Environment. It is an
extendable distributed software environment to integrate simulations, postprocessing
and visualization functionalities in a seamless manner. From the beginning COVISE was
designed for collaborative working allowing engineers and scientists to spread on a
network infrastructure. In COVISE an application is divided into several processing
steps, which are represented by COVISE modules. These modules, being implemented
as separate processes, can be arbitrarily spread across different heterogeneous
machine platforms. Major emphasis was put on the usage of high performance
infrastructures such as parallel and vector computers and fast networks. COVISE
Rendering modules support Virtual environments ranging from workbenches over
powerwalls, curved screens up to full domes or CAVEs [14]. The users can thus analyse
their datasets intuitively in a fully immersive environment through state of the art
visualization techniques including Volume rendering and fast sphere rendering.
Physical prototypes or experiments can be included into the analysis process through
Augmented Reality techniques.

44 http://graphics.stanford.edu/software/wiregl/
45 http://sourceforge.net/projects/chromium/
46 http://graphics.stanford.edu/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

24

Figure 4. COVISE / OpenCOVER

Functionality

The window in the above figure shows the so called MapEditor which is the main part
of the user interface. It is a Qt based program to allow interaction with COVISE. In a
collaborative session there are as many user interfaces as there are participants. One
user is the master and has the complete control over the environment while the others
are slaves and can do nothing besides requesting the master role. The large area in the
middle is for placing modules. Connected they form a flow chart like execution pipeline.
By clicking on a module in the module list the user places the desired modules in the
MapEditor window. Connecting the modules on a Point-and-Click basis defines the data
flow between the modules.

The main processes are the User Interface (UI) called MapEditor, the Controller, the
COVISE Request Broker (CRB) and the application modules. The local workstation
normally is the one where COVISE is started. On this machine the user interface pops
up and the Controller is started. All other processes are created from here, either using
exec calls for local processes or rexec/rlogin/rsh/ssh for processes on remote
computers. The user can include additional hosts into a session for remote module
execution. On each machine, a shared data space exists, which normally consists of
shared memory. The CRB administers the use of this shared data space in a database-
like fashion.

COVISE allows several users to work in a collaborative way. One can invite other users
on different hosts to participate in the current COVISE session. The user who initiated
the collaborative session becomes the master. On all machines a user interface pops
up and a CRB is started. Application modules can be started on any host participating
in the session. Renderer modules play a special role: in a collaborative session
Renderers run locally on each machine. When the master user manipulates the objects
in the Render window, only small synchronisation information has to be sent to the
other renderer modules. When the master rotates the scene, the new transformation

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

25

matrix is sent to the controller which in turn sends it to all other (slave-) Renderers. Of
course every user can request the master role. For audio- and videoconferencing
standard tools like InPerson or the public domain MBONE tools VIC/VAT are usually
used.

Own simulation or rendering codes can be integrated into COVISE as new modules by
adding a few calls from the COVISE libraries to create COVISE objects from data and for
communication with other COVISE modules.

The modular structure of COVISE makes it very easy to integrate new modules for
special tasks. The complex three-dimensional structure of the datasets that are
visualized with COVISE made us look for more advanced visualization techniques. The
result was a virtual reality rendering module called COVER (COVISE Virtual
Environment), which is based on Iris Performer. COVER has been replaced by
OpenCOVER which is based on OpenSceneGraph.

OpenCOVER is a further development of COVER, which was the original COVISE VR
renderer. It is based on OpenSceneGraph, an open source high performance 3D
graphics toolkit, to make optimal use of the rendering hardware. OpenCOVER stands
for "Open COVISE Virtual Environment" and is an integral part of the COVISE
visualization and simulation environment. The design of OpenCOVER was developed
to support technical and scientific applications. OpenCOVER supports loading
VRML2.0/VRML97 datasets, Detailed information about the supported features can be
found in this compatibility matrix.

The user interacts with the scene through the 3D device and a 3D menu. A line coming
out of the device intersects with the menu and the scene. Depending on the selected
action an appropriate interactor is drawn. The pictures on the left show some of the
interactors. Pressing the buttons selects a menu item or object. The pictures on the left
shows some of the interactors that can be attached to the stylus. Feedback is a very
special kind of interaction: it's interaction with other COVISE modules like on-going
numerical simulations and post-processing steps.

As a COVISE renderer module OpenCOVER also supports collaborative working. Three
collaboration modes have been implemented, Loose Coupling, Tight Coupling, and
Master/Slave Coupling. Cone-shaped markers can be placed in the 3D scene to point
to positions of interest.

OpenCOVER was developed for virtual environments using back-projection screen
based environments like CAVEs. The screen size can be configured easily through a
configuration file.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

26

Platform / Support

• UNIX/Linux, Windows, MacOS

Programming language / API

• C++, VPL (Map-Editor)

License

• LGPL v2.1
• COVISE and OpenCOVER are available open source47.

Organisation / Main Contributors

• High Performance Computing Center Stuttgart (HLRS)
• University of Cologne, Chair of Computer Science

3.3.3 Ensight	
 	

EnSight is a software program for visualizing, analysing, and communicating data from
computer simulations and/or experiments. Major fields of application for EnSight are
Automotive, Aerospace, Defense, Combustion, Energy Production, High-Tech
Manufacturing, and other fields which require very high precision in computer-based
physics modelling. It is most often used for Computational Fluid Dynamics (CFD),
Computational Structural Mechanics (CSM), and other CAE (computer aided
engineering) processes.

EnSight is a neutral post-processing tool with interfaces to the most popular CFD
packages such as Fluent, Star-CCM+, Converge, CFX, Open-FOAM etc., and popular FEA
interfaces such as Ansys, Abaqus, Nastran, LS-DYNA etc. EnSight also offers CAD
interfaces for all the popular CAD systems, such as Catia V4 and V5, Pro/Engineer etc.
In addition to this, there are interfaces for IGES, STEP for instance.

47 https://github.com/hlrs-­vis/covise

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

27

Figure 5. CEI EnSight48

Functionality

As described in [15], the vision behind EnSight has been a full-featured, interactive, high
performance visualization tool capable of scaling to the largest data sets. At the centre
of that vision is the ability to effectively leverage advanced computer systems both at
the desktop/display and in computational clusters. This chapter reviews the EnSight
framework for distributed application launch and rendering. The distributed launch
system facilitates custom deployment of scalable EnSight visualization solutions. It has
evolved to meet the increasingly varied requirements of its users, including
heterogeneous environments with potentially complex and restrictive access controls.
The rendering system is specially geared toward improved user interaction and
advanced rendering in distributed, high performance scenarios by exploiting advances
in desktop graphics card technologies and direct interaction methodologies.

CEI has kept an eye on developments in virtual reality (VR). As 3D tracking devices, input
devices, and new display technologies matured, CEI integrates VR capabilities into its
family of products [16].

This article [17] is a look at VR and how it is being implemented to help EnSight users
better analyse, visualize and communicate engineering and scientific results.

Platform / Support

• Windows, Linux/Unix, Max

Programming language / API

• build-in Python scripting

License

48 http://vis.lbl.gov/NERSC/Software/ensight/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

28

• commercial

Organisation / Main Contributors

• Computational Engineering International, Inc. (CEI Inc.)49

3.3.4 ParaView	

ParaView [18] is an extensible, reconfigurable framework that is used to inspect data
in many forms. The entire project is open source with a very liberal license and has
been designed from the start to be reused and extended wherever its capabilities are
useful. The desktop application platform is just one configuration of the modular,
parallel components that make up ParaView. Other “flavors” include the extensible and
reproducible python interface, immersion in advanced display environments, in situ
coupling with simulation code via Catalyst, ubiquitous access through web based
visualization and of course scalable processing in High Performance Supercomputing
(HPC) platforms.

ParaView [19] was developed to analyse extremely large datasets using distributed
memory computing resources. It can be run on supercomputers to analyse datasets of
petascale size as well as on laptops for smaller data, has become an integral tool in
many national laboratories, universities and industry, and has won several awards
related to high performance computation.

Figure 6. ParaView50,51

49 http://www.ceisoftware.com/
50 http://www.paraview.org
51 https://www.dkrz.de

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

29

Functionality

The most frequently used interface to ParaView is the desktop application. This is a Qt-
based application for Mac, Windows and Linux operating systems in which users very
easily open data files and begin to visualize them.

Seamless integration with Python began in ParaView version 3.0. By simply loading a
module from Python the user gets full access to all of ParaView’s large data
visualization and analysis capabilities. This includes the ability to create, on the fly,
scripted readers and filters that run, in parallel, on the server. ParaView scripts are easy
to write, especially if you choose to simply record your work in the desktop application
in the form of a python script. Python scripts can be played back with or without the
GUI in order to create reproducible, easily customizable, and scalable visualizations.

It is already common for simulations to discard most of what they compute in order to
minimize time spent on I/O. As we enter the exascale age the problem of scarce I/O
capability continues to grow. Since storing data is no longer viable for many simulation
applications, data analysis and visualization must now be performed in situ with the
simulation to ensure that it is running smoothly and to fully understand the results that
the simulation produces. Catalyst is a light-weight version of the ParaView server library
that is designed to be directly embedded into parallel simulation codes to perform in
situ analysis at run time [20].

ParaView’s stereo display modes, efficient tile and cave rendering engine, and VRPN
tracking interfaces make such immersion in the data possible.

Using the aggregate disk space, processing power and especially memory of a cluster
or supercomputer, ParaView scales to allow visualization and analysis of even the
largest scientific results. The pvbatch and pvserver family of executables are MPI
enabled programs that run in parallel on distributed memory parallel computers, in
which each node in the machine processes only a small portion of the entire data. The
many results are finally combined together and rendered, either in parallel when the
resulting geometry is large or in serial when the geometry is small, and displayed.

Web applications can embed interactive 3D visualization components via
ParaViewWeb’s light-weight JavaScript API. Underneath this API, ParaVewWeb
communicates with and responds to a ParaView server instance running on a remote
visualization node or cluster through HTML 5.0 based technologies, such as
WebSockets and WebGL. Together you have the accessibility of the world wide web
combined with the scalability of the ParaView server.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

30

Platform / Support

• Unix/Linux, Mac OS X, Windows

Programming language / API

• C/C++, Fortran, Python

License

• BSD

Organisation / Main Contributors

• Sandia National Laboratory,
• Kitware Inc.
• Los Alamos National Laboratory

3.3.5 SCIRun	

SCIRun [21] is a problem solving environment or "computational workbench" in which
a user selects software modules that can be connected in a visual programing
environment to create a high level workflow for experimentation. Each module
exposes all the available parameters necessary for scientists to adjust the outcome of
their simulation or visualization. The networks in SCIRun are flexible enough to enable
duplication of networks and creation of new modules.

Figure 7. SCIRun52,53

Functionality

The goal of integrated problem solving environments like SCIRun [22] is to integrate
data processing as components in a single, unified, extensible problem solving

52 http://www.vacet.org/
53 https://www.sci.utah.edu

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

31

environment. The resulting function includes the ability to manage each step in a
sequential computing process, and to create batch processes that execute repeated
simulations. The functionality that sets SCIRun apart from most integrated software
environments is the ability to intervene and control execution anywhere in the chain
at any time during its execution. The ability to control a computer program during
execution is termed computational steering.

In the example of the defibrillation simulation, computational steering allows users to
interactively change parameters and settings as the simulation executes, performing
his or her work in batch and interactive modes. Steering interventions might include
adjusting electrode locations to stay within anatomically reasonable bounds, or
refining the geometric model resolution in order to balance accuracy and execution
time.

To achieve integration within the elements of SCIRun, data flows directly from one
processing step to the next, without being diverted to a disk file or leaving the program.
Output from each step is available as input to dependent steps. The underlying
paradigm of SCIRun is data flowing between modules that each perform some
operation. Integration between modules guarantees, that upon completion of their
tasks, upstream modules pass their data to downstream modules, thereby forcing the
downstream modules to execute in response. In the computational steering example,
the user may alter electrode locations at any time, initiating a sequence of all necessary
steps to recompute the simulation with the new configuration. The modification of the
geometric model, finite element calculation, and visualization all proceed automatically
and in the proper sequence, all managed by SCIRun. The combination of steering and
component integration allows the user to spontaneously explore a problem.

While computational steering is a young field in computer science, there are a number
of examples of such systems (in addition to SCIRun) described in the literature. SCIRun
can be extended by creating new packages, modules, and subnets. Modules can be
coded from scratch, or with the assistance of the SCIRun's Module Maker component.
SCI encourages users to contribute modules to the BioPSE web site CIBC web site
where they will be reviewed, and useful modules will be included in subsequent
releases of SCIRun. To leverage investment in legacy code, future releases of SCIRun
will include additional tools for wrapping existing code within SCIRun modules.

SCI is developing problem specific applications called Power Apps. Power Apps use
SCIRun's data flow engine for computation and application specific data flow networks
for problem solving. However, Power Apps hide the complexity of the data flow
environment behind a simplified application specific graphical user interface [23].

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

32

Platform / Support

• Windows, Max OS X, Linux

Programming language / API

• C++, Python

License

• The MIT License

Organisation / Main Contributors

• University of Utah, Scientific Computing and Imaging Institute54

3.3.6 ViSTA	
 VR	
 toolkit	

The ViSTA virtual reality toolkit aims to enhance scientific applications with methods
and techniques of Virtual Reality and immersive visualization, thus enabling
researchers from multiple disciplines to interactively analyse and explore their data in
virtual environments. ViSTA is a software platform that allows integration of VR
technology and interactive, 3D visualization into technical and scientific applications.
ViSTA FlowLib [24] combines rendering techniques for the exploration of unsteady
flows in virtual environments.

The toolkit [25] has been developed at the Virtual Reality Group at RWTH Aachen
University for more than ten years and, recently, a cooperation in its development with
the DLR Braunschweig was established.

Figure 8. ViSTA VR toolkit

54 https://www.sci.utah.edu/software/scirun.html

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

33

Functionality

The VistaCoreLibs provide basic and commonly use functionality for virtual reality
application, such as

• Display Management
• Device input for a variety of VR input and output devices, e.g. tracking cameras

or haptic devices.
• Input device abstraction using a dataflow network
• Coupling to the OpenSG scenegraph library (OpenSceneGraph - support

planned)
• Cluster mode for distributed execution of ViSTA applications for multi-display

environments
• Utilities for system-independent use of threads, connections, files, timers, etc.

The VistaFlowLib provides methods for scientific visualization

• Data and time management
• Interaction methods
• Rendering methods
• Particle tracing

The VistaAddonLibs provide specialized functionality, e.g.

• Collision and physics simulation
• Methods for medical simulation (e.g. Haptics, Softbody simulation)
• Audio interface

Platform / Support

• linux x86, linux x86-64, win32, win32-x64

Programming language / API

• C++

License

• GNU Library or Lesser General Public License version 3.0 (LGPLv3)
• The ViSTA core libraries are available open source55.

55 http://sourceforge.net/projects/vistavrtoolkit/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

34

Organisation / Main Contributors

• RWTH Aachen - Virtual Reality Group (VRG)56
• DLR - Software for Space Systems and Interactive Visualization57

3.3.7 The	
 ViSUS	
 Visualization	
 Framework	

The ViSUS software framework [26] has been designed as an environment that allows
the interactive exploration of massive scientific models on a variety of hardware.
Furthermore, it has the ability to do so over platforms distributed geographically.

Figure 9. The ViSUS Visualization Framework58

Functionality

The ViSUS software framework was designed with the primary philosophy that the
visualization of massive data need not be tied to specialized hardware or
infrastructure. In other words, a visualization environment for large data can be
designed to be lightweight, highly scalable, and run on a variety of platforms or
hardware. Moreover, if designed generally, such an infrastructure can have a wide
variety of applications, all from the same code base. The components can be grouped
into three major categories: First, a lightweight and fast out-of-core data management
framework using multiresolution space-filling curves. This allows the organization of
information in an order that exploits the cache hierarchies of any modern data storage
architectures. Second, a data flow framework that allows data to be processed during
movement. Processing massive data sets in their entirety would be a long and
expensive operation, which hinders interactive exploration. By designing new
algorithms to fit within this framework, data can be processed as it moves. The third
category is a portable visualization layer, which was designed to scale from mobile
devices to Powerwall displays with same the code base. This chapter describes the
ViSUS infrastructure, and also explores practical examples in real-world applications.

56 https://www.itc.rwth-­aachen.de/cms/IT-­Center/Forschung-­Projekte/~eubl/Virtuelle-­Realitaet/
57 http://www.dlr.de/sc/en/desktopdefault.aspx/tabid-­1200/1659_read-­3101/
58 http://visus.net/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

35

Platform / Support

• Mac OS, Linux, Windows

Programming language / API

• C++

License

• commercial

Organisation / Main Contributors

• ViSUS LLC, Salt Lake City59

59 http://visus.net

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

36

3.4 Comparison	

The relevant software systems (see 4.3) are evaluated according to the criteria (see 4.2).

 Ch
ro

m
iu

m

CO
VI

SE
/

O
pe

nC
O

VE
R

En
si

gh
t

Pa
ra

Vi
ew

SC
IR

un

Vi
ST

A

Vi
SU

S

data
processing

o ++ o ++ ++ ++ ++

I/O modules o ++ o ++ ++ ++ ++
API ++ ++ - ++ ++ ++ + 2
license o ++ - ++ ++ ++ -

hardware
support

+ ++ + ++ ++ + +

remote
visualisation

++ ++ 1 + ++ ++ ++ ++

Table 1. Visualisation software evaluation

	

1	
 currently	
 in	
 development,	
 2	
 API	
 was	
 not	
 available	
 for	
 testing	

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

37

4. Methods,	
 tools	
 and	
 mechanisms	
 for	
 GSS	
 and	

building	
 DSLs	
 	

4.1 Introduction	

Synthetic information systems (SIS) will be the main tool used in CoeGSS, in particular,
within the pilot projects.

Tackling a problem with an SIS involves several steps, roughly divided into five phases:

1. Determining the static aspects of the SIS:

 This phase involves
– designing the (human) agents: selecting the features that will be represented

(such as age, income, employment status, health, etc.)
– designing the environment of the agents: selecting relevant locations (schools,

workplaces, homes, etc.), other objects (cars, houses, communication
technology, etc.), resources (water infrastructure, gas stations, etc.), agencies
not modelled directly as collections of agents (e.g., international law-giving
bodies, government measures, etc.)

– establishing statical relationships between the various elements (kinship,
ownership, subordination, etc.)

 If we look at the SIS as a dynamical system, this phase contributes towards the
definition of the state space of the system. The state is viewed as a structured
collection of individual states of the agents and components of the environment.

2. Determining the dynamical aspects of the simulation:

– choosing the activity patterns of the agents, usually in the form of timetables
(agents that usually go to work on week-days, or to school, or work shifts, etc.)

– establishing the dynamical relationships between the elements (the
probability that an agent will visit a given location on a given day at a given
time, the probability that the government will issue a certain measure
depending on the state of the environment, etc.)

– selecting the dynamics of the simulation itself (deciding whether locations can
be added during the running of a simulation, which changes can be made to
the parameters, allowing for checkpointing, allowing for user interaction, etc.)

 We underline that the static and dynamic aspects of the SIS are not independent of
each other. For example, the choice of activity patterns will often lead to changes in
the features that must be represented in the agents.

 This phase determines the type of the transition function of the system, usually seen
as composed of "local" transition functions of the agents, environment, and of the
simulation infrastructure. This is not yet a definition of the transition function, since
most of the parameters will only be fixed in the next phase.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

38

3. Obtaining and processing the data and creating the SIS

– discovering the relevant data sources, downloading data, "scrubbing" data,
etc.

– creating a synthetic population such that the statistical properties of its agents
match those of the real intended population in the case of the selected
features (as given by the data)

– identifying the parameters of the local state transition functions (the
probability that agents will visit certain locations under given circumstances,
weather patterns, etc.)

 The distinction between static and dynamical aspects of the SIS reflects the fact that
data for creating the static aspects is usually more readily available (as, e.g., census
data) than the data for transition probabilities.

 In this phase, the initial state and the transition function for the SIS are fully
determined: the simulations can be run.

4. Running the SIS simulations
5. Analysing and interpreting the resulting data

In many cases, interactions between agents are mediated by locations (agents interact
by virtue of being in the same place at the same time). The transition functions of
agents are then represented using activity patterns as building blocks:

Activity Monday Tuesday ...

morning Work(0.7), Home(0.3) ...

afternoon Work(0.6),Home(0.3),Gym(0.1) ...

evening Home(0.7),Restaurant(0.2),Movie(0.1) ...

night Home(0.9),Hotel(0.1) ...
Table 2. Activity patterns as building blocks

The entries in the table represent probability distributions over the possible locations
the agent will find itself at the given time. For example, if the agent is a schoolchild,
there will be a high probability that it finds itself in school during school day mornings,
the same holds true for school teachers.

Except for the simplest cases, an agent has several activity tables associated with it, the
one being used will depend on its state and the state of its neighbourhood. For
example, sick schoolchildren are much likelier to be at home than in school, even on
school days. Healthy schoolchildren with sick parents are also likely to have their
schedules disturbed, etc. In general, the more complex the agents and their
interactions are, the more information has to be supplied outside of the activity tables
in order to compute the transition function. Nevertheless, the concept of activity
pattern plays an important role in many applications and is a key element in the

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

39

creation of DSLs for GSS synthetic information systems. Tabular representations of
functions are common DSL patterns [27] and are good starting points for graphical
user interfaces geared towards non-programmers.

Widening the circle of potential users of GSS SISs is only a secondary benefit of the DSL
approach. Its main contribution consists in improving the understanding of the
concepts involved ("agent", "population", etc.), being, in effect, a formalisation of these
concepts, and in providing a uniform access to the software packages that implement
the creation of the synthetic population and carry out the simulation.

As an example, consider the open source framework for epidemic modelling FRED [28].
In FRED, the characteristics of the agents are hard-coded, as are many aspects of the
transition functions, all being focused on the goal of efficient simulation of epidemics
in populations with tens or hundreds of millions of agents. In order to use FRED for a
different purpose, such as modelling the spread of health-relevant habits in a
population, one has to modify virtually every single file of the framework code.
Nevertheless, the general structure and most of the code are applicable to such
purposes as well. A DSL for GSS SISs would allow users to describe the agents and the
simulation at a higher level of abstraction, and then the DSL compiler would make the
necessary changes to the FRED framework, in much the same way as a compiler of a
high-level language such as Eiffel can generate code written in C. Just as the reason for
compiling code to C is to take advantage of the existing environment for C programs,
so the reason for compiling a GSS SIS to FRED is to take advantage of the FRED
framework. If a different framework turns out to be more suitable, the GSS SIS does
not need to be changed: a new back-end can be provided, which uses the new
framework instead of FRED. By separating the conceptual part from the
implementation the DSL approach avoids lock-in and enables us to take advantage of
resources as needed.

The next section presents a number of existing software packages that can be used as
back-ends for the DSLs for GSS SISs. The final section is dedicated to methods and tools
for implementing the DSLs themselves.

4.2 Available	
 software	
 for	
 creating	
 and	
 running	
 synthetic	

populations	

4.2.1 Software	
 for	
 creating	
 synthetic	
 populations	

4.2.1.1 simPop	

• Description: simPop is an Open Source R Package for Generating Synthetic
Populations

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

40

• Functionality: The package provides a way of generating synthetic populations
of households.

• Programming Language: R programming language
• License: GPL v2/3
• URI: http://www.ihsn.org/home/projects/synthetic-populations
• Organisation: International Household Survey Network (IHSN)

4.2.1.2 PopGen	

• Description: Tool for synthesizing populations in small geographies, used for

activity based modeling
• Functionality: Generates synthetic populations while controlling and matching

both household-level and person-level attribute distributions
• Programming Language: Python
• License: GPL V3
• URI: http://urbanmodel.asu.edu/popgen.html
• Organisation: Arizona State University

4.2.1.3 SynthPop	

• Description: Reimplementation of PopGen using the modern scientific Python

stack, with a focus on performance and code reusability
• Functionality: Similar to PopGen
• Programming Language: Python
• License: BSD
• URI: https://github.com/UDST/synthpop
• Organisation: Paul Waddell, Synthicity, now Autodesk

4.2.2 Software	
 for	
 multi-­‐agent	
 simulations	

4.2.2.1 MATSim	

• Description: MATSim provides a framework to implement large-scale agent-
based transport simulations (Grether and Nagel (2013)).

• Functionality: Agent-based simulation for public transport. Requires
transportation network data, human population data and transportation
survey data. Generating synthetic human population seems not to be handled
by MATSim. MATSim creates agent activity plans from activity chains, which
represent round-trips (Rieser et al. (2006)).

• Programming Language: Java
• License: GPL v2
• URI: http://www.matsim.org
• Organisation: TU Berlin, ETH Zurich, Senozon

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

41

4.2.2.2 MITSIM	

• Description: MITSIM is the traffic simulator that is part of MITSIMLab.

MITSIMLab is an open-source simulation-based laboratory that was developed
for evaluating the impacts of alternative traffic management system designs
at the operational level and assisting in subsequent design refinement.
MITSIMLab was used by KTH to model traffic in Stockholm.

• Functionality: MITSIM requires a model of the road network and origin-
destination-time triples. Driver behaviour parameters are assigned to each
agent. MITSIM focuses on road traffic and supports dynamic traffic assignment
(DTA), where agents can adapt their behaviour dynamically based on the
observed conditions on the road (Antoniou et al. (2011)).

• Programming Language: C++
• License: MIT
• URI: https://its.mit.edu/software/mitsimlab
• Organisation: Intelligent Transportation Systems Lab at MIT

4.2.2.3 UrbanSim	

• Description: UrbanSim is a model system for analysing urban development

(Waddell (2011)). UrbanSim is part of Urban Data Science Toolkit (UDST).
• Functionality: Agent design (based on city planning, regulation, transportation

network etc.), simulation. Generating synthetic population is handled by
another component of UDST called synthpop (see previous section).

• Additional information: UrbanSim was initially implemented in Java, then
reimplemented in Python, then reimplemented again in Python to make use
of tools developed by the PyData community.

• Programming Language: Python, using PyData tools
• License: 3-clause BSD, it's possible that proprietary parts exist too.
• URI: https://github.com/UDST/urbansim
• Organisation: Paul Waddell, Synthicity, now Autodesk

4.2.2.4 MUSSA	
 II	

• Description: MUSSA II is a model designed to forecast the expected location of

agents, residents and firms, in the urban area, based on the paradigm of static
market equilibrium [29].

• Functionality: The system is based on a simulation that reaches a fixpoint.
Agent design and this kind of simulation is what the system provides. Agent
design and simulation take into account regulation, budgets of agents,
accessibility and preferability of sites.

• Programming Language: Unknown

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

42

• License: Code doesn't seem to be available
• URI: http://link.springer.com/chapter/10.1007%2F978-3-642-12788-5_5
• Organisation: University of Naples Federico II, University of Southampton

4.2.2.5 Simdemics	

• Description: general-purpose modelling environment to support pandemic

planning and response.
• Functionality: scalable to networks with 300 million agents, interactive

capabilities, extended with additional components for Internet access, data
analytics, etc. HPC ready.

• Programming Language: apparently Charm++
• License: not available
• URI: not available
• Organisation: Virginia Tech
• Note: Simdemics and its components have been described in several articles

(e.g., [30], [31], [32], [33], [34]) but the descriptions are neither complete, nor
consistent. For example, in an overview article for Computing in Science &
Engineering [35], Pam Frost Gorder says "Simdemics has three variants:
EpiSims, EpiSimdemics, and EpiFast, which let users trade off between model
generality and processing speed". In fact, EpiSims and EpiFast appear to be
predecessors of Simdemics, while EpiSimdemics is described as "an algorithm"
in [34], but also as "simulation" and an "implementation" (in the same article!),
and as an "agent-based simulation method" in [31]. The article [31] starts by
saying

	
 "In	
 this	
 paper,	
 we	
 describe	
 an	
 interaction-­‐based	
 highly	
 resolved	
 modeling	
 approach	
 for	

representing	
 and	
 reasoning	
 about	
 large	
 scale	
 epidemics.	
 We	
 build	
 on	
 our	
 earlier	
 work	
 (Barrett	
 et	

al.	
 2008),	
 wherein	
 we	
 described	
 EpiSimdemics	
 [...]	
 Specifically,	
 we	
 developed	
 Simdemics,	
 that	
 in	

conjunction	
 with	
 EpiSimdemics,	
 allows	
 us	
 to	
 study	
 the	
 joint	
 evolution	
 of	
 policy,	
 disease	
 dynamics,	

human	
 behavior	
 and	
 social	
 networks	
 as	
 an	
 epidemic	
 progresses."	

 and concludes with

	
 "We	
 have	
 presented	
 EpiSimdemics,	
 a	
 large	
 scale,	
 highly	
 detailed,	
 interaction-­‐based	
 epidemic	

simulation."	

 (there is no mention of Simdemics in the concluding section of the paper).

4.2.2.6 FRED	

• Description: FRED (A Framework for Reconstructing Epidemiological Dynamics)

is a system that models the spread of infectious diseases, and effects of
response strategies using multi-agent simulation [28].

• Functionality: Multi-agent simulation of spreading of infectious diseases, which
takes into account geographic locations and social networks. Multiple evolving

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

43

strains of pathogens can be simulated, as well as response and mitigation
strategies. FRED requires a synthetic population provided by a 3rd party tool.

• Programming Language: C++
• License: 3-clause BSD
• URI: http://fred.publichealth.pitt.edu
• Organisation: Graduate School of Public Health, University of Pittsburgh
• Note: FRED is one of the simplest simulation systems based on synthetic

populations. Almost all essential aspects, such as agents' features or activity
patterns are hard-coded. The source code base is small, currently under 45000
lines of C++ code. In a certain sense, it is the complete opposite of Simdemics.
Nevertheless, FRED and Simdemics have been used in very similar studies, for
example in the analysis of policies to reduce the impacts of influenza [36] using
FRED versus [37] and [30], which use Simdemics).

4.2.2.7 ABM++	

• Description: software framework for implementing agent based models using

C++ [38]
• Functionality: allows applications to run on distributed architectures, provides

a C++ message passing API, a serialisation interface that allows objects to be
moved between distributed nodes, a synchronization method and both time-
stepped and distributed discrete event time update mechanisms

• Programming Language: C++
• License: GPL
• URI: http://parrot-farm.net/ABM++/
• Organisation: Douglas Roberts (RTI International)
• HPC capabilities: yes

4.2.2.8 Pandora	

• Description: an agent-based modelling framework for large-scale distributed

simulations [39]
• Functionality: full Geographical Information System support, support for

parameter sweeps, GUI tool (Cassandra) used to analyse the results generated
by a simulation

• Programming Language: C++, language bindings to Python
• License: GPL v3
• URI: http://xrubio.github.io/pandora/
• Organisation: Xavier Rubio-Campillo (Barcelona Supercomputing Centre)
• HPC capabilities: yes

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

44

4.2.2.9 Repast	

• Description: Repast Simphony (REcursive Porous Agent Simulation Toolkit) is a

system for multi-agent simulation especially focused on applications in social
sciences [40].

• Functionality: Repast is a Java-based generic environment for programming
multi-agent simulations. In addition to Java, Repast allows model development
in Python and C#. Additionally, Repast exists in two more variations: Repast
Simphony and Repast HPC. Repast Simphony is a Java-based environment for
running simulations on small computing clusters. Repast HPC is a C++ based
environment for running simulations on supercomputers [41].

• Programming Language: Java
• License: BSD (and other free licenses)
• URI: http://repast.sourceforge.net
• Organisation: University of Chicago
• HPC capabilities: yes (Repast HPC)

4.2.2.10 Swarm	

• Description: Swarm is a versatile multi-agent simulation system [42]. The

framework is generic, but has a steep learning curve [43].
• Functionality: Swarm provides a general language and libraries for creating

multi-agent simulations. The environment for agents taking part in a
simulation is also modelled as a set of other agents, which interact with the
proper agents. Observations on the simulation are also performed using
special 'observer' agents. Swarm also profides a Java interface, which allows
programming the simulations in Java.

• Programming Language: Objective-C
• License: GPL
• URI: http://www.swarm.org/wiki/Main_Page
• Organisation: Swarm Development Group, Santa Fe Institute

4.2.2.11 Mason	

• Description: Mason (Multi-Agent Simulator Of Neighborhoods) is a multi-agent

simulation system focused at simplicity and speed [44]. A related project
DMASON (Distributed Mason) is developed independently.

• Functionality: Mason provides a light-weight simulation environment. The
simulations yield deterministic results across platforms. Furthermore, running
simulations can be checkpointed, and migrated to another machine, and
possible another platform.

• Programming Language: Java

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

45

• License: Academic Free License, version 3.0
• URI: http://cs.gmu.edu/~eclab/projects/mason/
• Organisation: George Mason University

4.2.2.12 FLAME	
 (Flexible	
 Large-­‐scale	
 Agent	
 Modelling	
 Environment)	

• Description: FLAME is a generic agent-based modelling system [45].
• Functionality: Agents are modelled as finite state machines, broadcast

communication method, communication is synchronised. A variant of the
framework (FLAMEGPU) [46] allows parallel execution of simulations in HPC
environments and on GPUs.

• Programming Language: C
• URI: http://www.flame.ac.uk/
• Organisation: Science and Technology Facilities Council
• HPC capabilities: yes

4.2.2.13 NetLogo	

• Description: multi-agent programmable modelling environment
• Functionality: supports behaviours, agent lists, graphical interfaces
• Programming Language: dialect of Logo (implemented in Scala and Java)
• License: GPL v2
• URI: https://ccl.northwestern.edu/netlogo/
• Organisation: Center for Connected Learning and Computer-Based Modeling,

Northwestern University. Evanston, IL.
• HPC capabilities: no.
• Remark: extensively used in education, large collection of models, high-quality

documentation available

4.2.3 Software	
 for	
 complete	
 SIS	
 simulations	

4.2.3.1 ILUTE	

• Description: ILUTE is a microsimulation model of urban systems, which
simulates transportation and changes in land use.

• Functionality: Includes population synthesis, agent design based on projects,
simulation.

• Programming Language: C++
• License: Unknown (apparently distributed on a CD)
• URI: http://www.civ.utoronto.ca/sect/traeng/ilute/ilute_the_model.htm
• Organisation: University of Toronto

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

46

4.2.3.2 ILUMASS	

• Description: ILUMASS (Integrated Land Use Modelling and Transportation

System Simulation) is a microscopic simulation model of land use, transport
and environmental impacts in urban regions.

• Functionality: Includes population synthesis, agent design based on daily
activities, and simulation.

• Additional information:
• One fundamental reason for the partial success may be that scientists are

often not very well prepared for the computer programming aspects (Wilson
2006a, b). However, there are other areas where the project was simply too
inefficient in its work processes

• (from http://www.spiekermann-wegener.de/pub/pdf/PWMW_ILUMASS.pdf)
• ILUMASS is partially based on the IPRUD model, which dates back to 1977.
• Programming Language: Unknown
• License: Code doesn't seem to be available
• URI: http://www.spiekermann-wegener.de/pro/ilumass_e.htm
• Organisation: Seven research institutions in Germany

4.2.3.3 TRANSIMS	

• Description: TRANSIMS is a complete simulation environment for

transportation.
• Functionality: Includes population synthesis, agent design and simulation. The

simulation is iterated in order to reach a Nash equilibrium. Some parts of the
simulation can be run on a parallel cluster of machines.

• Programming Language: C++
• License: Apache license 2.0, NASA Open Source Agreement
• URI: https://www.fhwa.dot.gov/planning/tmip/resources/transims/
• Organisation: Federal Highway Administration, US Department of

Transportation
• HPC capabilities: yes

4.2.4 Available	
 software	
 for	
 implementing	
 DSLs	

In a very simplified manner we can say that, when defining and implementing a new
programming language, one starts with a formally described grammar, which defines
the syntactical expressions of the language, and an operational semantics of the
language, telling us how the syntactical expressions, when executed, will affect the
state of the computer. An interpreter or a compiler for the language will take a source
code file, containing expressions in the language, and translate it into a sequence of

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

47

machine-level instructions which, when run, will produce the specified changes to the
computer.

Many general-purpose languages, such as assembly language, C, C++, Java, etc. have
been designed in order to support the representation of computer-specific data
structures and instructions: individual memory locations, chunks of memory locations,
jumps, increments, shifting registers, etc. When it comes to designing high-level data
structures and functions, for example government measures, stochastic transition
functions, etc., their syntax is somewhat cumbersome. For instance, because a lot of
details must be specified, related to how the high-level elements are to be represented
in the computer.

When designing a DSL, the aim is to have a representation for the high-level elements
as smooth as possible. That is why, in many cases, the syntax of the DSL is not going to
simply adopt the syntax of an existing language. In such cases, we need to provide a
new compiler, written in a different language, for translating the DSL into machine
code. The DSL is then called stand-alone.

There are, however, programming languages whose syntax does turn out to be suitable
for defining the high-level data structures and functions of the DSL. We can then use
the compiler of the existing languages directly for translating the DSL into source code.
In that case, the DSL is called embedded.

The rest of this section is divided along the distinction between stand-alone and
embedded DSLs. In the first case, we need software tools for constructing a new
interpreter or compiler. In the second case, we need a programming language which
is suitable for expressing high-level elements in a convenient fashion.

4.2.5 Software	
 for	
 stand-­‐alone	
 DSLs	

4.2.5.1 Flex	

• Description: open source generator of lexical analysers
• Functionality: takes as input a rule file and generates C code that lexes source

files according to the rules
• Programming Language: C
• License: BSD-like
• URI: http://flex.sourceforge.net/
• Organisation: actively supported by Will Estes

4.2.5.2 Bison	

• Description: general-purpose parser generator

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

48

• Functionality: converts an annotated context-free grammar into a deterministic
LR or generalized LR (GLR) parser

• Programming Language: C
• License: GNU 3 or higher
• URI: https://www.gnu.org/software/bison/
• Organisation: FSF

4.2.5.3 ANTLR	

• Description: parser generator
• Functionality: covers the functionality of both Flex and Bison
• Programming Language: Java
• License: three-clause BSD license
• URI: http://www.antlr.org/
• Organisation: maintained by Terence Parr, University of San Francisco.

4.2.5.4 Parsec	

• Description: monadic parser combinatory library
• Functionality: provides combinators (simple higher-order functions) to create

parsers from grammars
• Programming Language: Haskell
• License: BSD-style
• URI: https://github.com/aslatter/parsec

4.2.6 Software	
 for	
 embedded	
 DSLs	

4.2.6.1 Lisp	

• Description: a family of languages related to the language designed by John
McCarthy in the late '50s

• Functionality: Lisp was originally designed for AI tasks, including symbolic
processing and self-modifying code. Modern implementations offer powerful
facilities for manipulating program representations.

• Availability: many available high-quality open-source implementations
• URIs: Unknown

4.2.6.2 Haskell	

• Description: lazy pure functional language
• Functionality: high-level type system, pattern-matching, appealing syntax
• Availability: currently one high-quality open-source implementation, GHC

(Glasgow Haskell Compiler)
• URIs: https://www.haskell.org/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

49

4.2.6.3 Agda	

• Description: lazy dependently-typed programming language
• Functionality: mature dependently-typed system, appealing high-level syntax

(more flexible than Haskell's), suitable for specifying not just the high-level
elements, but also their properties

• Availability: one open-source implementation, evolving, not suitable for
industrial-level programming

• Remark: within CoeGSS, Agda could be used in conjunction with other tools in
order to ensure correctness of implementations

• URI: http://wiki.portal.chalmers.se/agda/pmwiki.php

4.2.6.4 Idris	

• Description: eager dependently-typed programming language
• Functionality: similar to Agda's, type system is somewhat less mature, aims at

being usable for systems programming. Special facilities for DSLs.
• Availability: one open-source implementation, relatively unstable, not suitable

for industrial-level programming
• Remark: could play the same role as Agda in CoeGSS
• URI: https://github.com/idris-lang

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

50

5. Type	
 theoretical	
 approaches	
 to	
 the	

representation	
 of	
 uncertainty	

5.1 Introduction	

In every project and implementation that involves the processing of large amounts of
data it is essential to consider ways of dealing with incompleteness, inconsistency and
lack of accuracy, i.e. with several kinds of uncertainty in data.

However, not only the uncertainty in data has to be considered but also the uncertainty
in computation, i.e. the reliability of deployed software components.

In this chapter we describe the starting point of an approach for representing different
kinds of uncertainty based on type theory. The outcome of this type theoretical
approach will on the one hand contribute to the development of DSLs for synthetic
populations and agent based modelling systems. On the other hand, the validated
implementation of methods of interval analysis in a functional language will lead to
touchstones for the correctness of components of GSS- simulations.

In section 6.2 we give an overview on several kinds and sources of uncertainty. In
section 6.3 the role of functional programming languages as host languages for DSL is
described and in section 6.4 we identify the kinds of uncertainties we have to consider
when synthetic populations will be created.

Section 6.5 describes monads as a key concept for uncertainty. Finally, section 6.6 lists
existing monadic implementations of different kinds of uncertainty.

5.2 Uncertainty	

Census data, data from measurements, statistical analyses and numerical simulations
are often incomplete, inconsistent or inaccurate.

Web, social media, sensor networks and company data are often affected by different
kinds of uncertainty. Uncertainty can arise because of inaccurate sensors. Data from
social media can be noisy, enterprise databases incomplete, outdated or simply wrong.
In models of socio- economic systems, certain notions can turn out to be ambiguous.
Typical examples are notions of stability, resilience, sustainability, viability.

Further uncertainties can arise in processing of data, for example when machine
learning techniques are applied. This concerns the ability of clustering, regression, and
correlation.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

51

While data from governmental sources like Census are well documented, those from
other sources like social media or sensors are not. They often lack in information about
provenance and are unlikely to have been sampled according to any recognized
sampling scheme.

To make rational decisions, we need tools to reason about data uncertainty,
understand how uncertainty propagates from data to simulations and communicate
our findings to decision makers.

As the software, to be integrated or from scratch developed, has to deal with
uncertainties, we need to provide a feasible solution which can mitigate negative
impacts when propagating uncertainties from data to simulation results.

5.3 Functional	
 Programming	
 languages	
 and	
 DSLs	

DSLs support solving domain specific problems in terms of the concepts of the domain
itself. They lead to programs that are easy to understand and reason about. They help
to improve the productivity of domain experts. These do not need to be programming
experts, as the syntax can be specifically designed for them. They can take advantage
of the DSL to implement models in terms of domain specific notions and constructs.

The most popular way of implementing a DSL is to embed it in a general purpose
programming language, called the host language. It is efficient, because the resulting
DSL only needs to contain the concepts and functions needed for the specific domain.
Moreover, embedded DSLs are easily extensible and customizable to particular
problem instances.

Functional programming languages have proven to be good host languages, mainly
because their type systems support algebraic data types and pattern matching. This
makes it easier to reason about programs and prove properties.

	

Referential transparency, sound type checking and termination checking can be
extremely useful when it comes to show that a model implementation meets its
specification, that is, it is correct. Thus functional programming languages as host
languages for DSLs play a crucial role in developing provably correct models.

5.4 Synthetic	
 Populations	
 and	
 uncertainty	

To properly represent uncertainty in a DSL, we have to understand which kinds of
uncertainty affect the data and the models we deal with.

For implementing an agent based modelling system on the basis of synthetic
populations we consider the steps detailed in Chapter 6 of this document.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

52

The first step consists of setting up of the (static) data characterizing the agents, for
example in terms of age, height, gender, income and spatial data. Depending on the
source of the real world data that we will use as the blueprint for the synthetic
population, we may want to pair the raw data with measures of precision or reliability.
For example, we might want introduce features like disease risk or a range of income
instead of a single salary number.

In steps 2 and 3 where the transition functions (i.e. activity patterns) are defined and
adapted, we plan to deploy learning techniques to find the patterns. This is a highly
nondeterministic process and creates much uncertainty of the resulting data. It results
not only in probabilities of state transitions but, depending on the quality of the data
(errors in measurement, the sampling techniques used for a study we learned from,
etc.) such probabilities will be affected with some reliability measure, that has to be
taken into account when the results of the simulations are evaluated.

With the help of a provable correct implementation of interval arithmetic we would be
able to qualify the results of the software components used for the parameter
estimation of the activity patterns and the synthesis of best-fitting synthetic
populations.

When running simulations with nondeterministic activity patterns, each step yields a
set of possible outcomes, perhaps with different probabilities. Typically, different kinds
of uncertainties have to be tracked down and propagated correctly in order to estimate
their cumulative effect on the outcome of the simulation.

5.5 Monads	

A ubiquitous structure in functional programming languages is that of a monad. Many
common programming concepts can be described in terms of a monadic structure,
including side effects such as input/output, variable assignment, exception handling,
nondeterminism and concurrency. Monads are in particular useful to represent
uncertainties. In fact they may be considered as a kind of metastructure that contains
everything that we would expect from an uncertainty related notion.

Formally a monad M is a type constructor M: Type → Type satisfying the following
properties:

M is a functor, that means there exists a polytypic function fmap M that maps a function
f: A → B producing outputs of type B from inputs of type A, to a function
fmap_M f: M A → M B, that produces outputs of type M B for inputs of type M A.

There is a way to represent certain outcomes as corner cases of uncertain events. This
is given in terms of a function

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

53

certain_M: A → MA.

There is a way to reduce "second order" uncertainty provided by a function

Reduce_M: M(M A) → M A

Moreover, fmap_M, certain_M and reduce_M have to fulfil a small number of equations,
the monad laws, for M to be a monad. Thus, defining a monad M means implementing
fmap_M, certain_M and reduce_M, and showing that these functions fulfil the monad
laws.

The behaviour of the agents in a synthetic population may be seen as a sequential
decision procedure [47]. This is a process described by a sequence of states. At every
time step the agent is in a certain state (e.g. healthy or not) and after choosing some
control (making a decision) and depending on its environment it enters a new state.

In the following sections we describe some structures that have been or will be
implemented as monads: lists, fuzzy sets, probability distributions, rough sets and
intervals.

5.5.1 Identity	
 monad	

A deterministic decision process can be described, at each decision step, by a set of
possible states, a set of possible controls and a transition function [47]. For every state
x and selected control y, the transition function step calculates the next state x’ of the
process. More formally we describe a deterministic process in terms of state and
control functions

X: (t : Nat) → Type and Y: (t: Nat) → (x: X t) → Type and a transition function
step: (t : Nat) → (x : X t) → (y : Y t x) → X (t+1). The interpretation is that step t x y

is the outcome of selecting control y in x.

A deterministic process may be viewed as a nondeterministic process. The
corresponding monad is the identity monad Id, with id A=A for every type A, and with
map_Id f=f, certain_Id = reduce_Id =id.

5.5.2 Lists	

In a nondeterministic decision process, the selection of a control does not determine a
unique next state. Instead, there is a whole set of possible next states. These can be
represented with a list.

If we adopt the Haskell List A for the type of lists of elements of type A, the step function
for a nondeterministic decision process has the type:

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

54

 step': (t: Nat) → (x:X t) → (y:Y t x) → List (X(t+1))

A list type is supported by every functional programming language. The function
certain_List produces a singleton list from the given element and reduce_List produces
a list when given a list of lists as input by concatenation.

5.5.3 Probability	
 distributions	

Sometimes we know that, when selecting a control y in a given state x at decision step
t, certain next states are more probable than others. In this case we take advantage of
the order in step t x y: List (X(t+1)) to represent this knowledge. For instance, we can put
states with higher probability first. Sometimes we even know numerical probability
values for every possible outcome. If the number of possible outcomes is finite (X(t+1)
can still be infinite), we can just replace List(X(t+1)) by finite probability distributions on
X(t+1). For instance, Prob(X(t+1))=List(X(t+1), Real).

If we define Prob as a monad the function reduce_Prob is supposed to give a combined
probability distribution resulting of a sequence of probabilistic choices, while
certain_Prob interprets a particular value as probability distribution with only one
possible event.

5.5.4 Fuzzy	
 sets	

The typical mathematical approach to deal with ambiguity is to model vague concepts
by means of fuzzy sets. While (crisp) properties usually are modelled with membership
functions χ: X → {0,1} there are also concepts like “large”, “red”, “fast” that can best be
described with degrees of membership.

A fuzzy set is a function f: X → L, where L represents a lattice. If an object x belongs fully
to the concept then f(x) =1_L, if it doesn’t have the property at all, then f(x) = 0_L, where
1_L and 0_L are the maximum or the minimum of the lattice respectively.

5.5.5 Rough	
 sets	

There is another mathematical concept that has been proven useful for modelling
uncertainties. When defining the decision functions for the ABMS we have to derive
decision rules for the agents from the given real data. For this knowledge discovery
process the concept of rough sets might be suitable. The central notion with rough sets
is that of indiscernibility. If we have a set R of objects that cannot be distinguished with
the given information we may represent it as a rough set. We describe it by a formal
approximation in terms of a pair of sets, its lower and upper approximation. The first
describes the set of objects that definitely belong to the set, the second the set of
objects that possibly belong to it.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

55

5.5.6 Intervals	

Interval arithmetic was developed starting from the 1950ies approach for
implementing reliable numerical methods. In interval arithmetic, plain numbers are
replaced by intervals. Thus, the result of a computation (as well as its arguments or
inputs) is an interval. The interpretation is that each number in that interval is a
“possible” result. Implementations of interval arithmetic rely on intervals defined as
pairs of machine numbers. Set operations on intervals are combined with interval
function evaluations to get algorithms for computing enclosures of sets of solutions.

An interval valued extension F of a real valued function f is function from intervals to
intervals such that, for all a,b: Real_machine, f x is in F [a,b] for all x in [a,b].

In interval arithmetic, every interval [a,b] has a dual nature. It is an alias for
(Real_machine,Real_machine) and it represents a set [a,b]={x:a≤x≤b}.

It is easy to see that intervals as pairs of machine numbers are monads. In order to
develop methods for measuring and quantifying the cumulative effect of uncertainties
on computations, a minimal library of interval based functions has to be conceived,
implemented and verified. Here we will take advantage of dependently typed
languages to express unambiguous specifications (e.g. for function extensions, see
above) and derive provably correct implementations. It is the proofs as programs
paradigm that ensures the correctness, with an implementation that does not match
the specification, the type checker would not accept the program.

There are several books on interval mathematics, for example [48] and [49]. Interval
mathematics as well as fuzzy theory were developed to implement approximate
reasoning. A book that shows the connection between both is [50]. As a starting point
to implement interval arithmetic we need a suitable type theory that may be found for
instance in [51].

5.6 Existing	
 Implementations	

As explained above, we will use a functional programming language as host language
for the DSL. One advantage is that we will be able to derive machine checkable
(provably correct) applications. Moreover, applications will be easier to understand,
maintain and extend. In functional programming languages functions are functions in
the mathematical sense. They are designed to accomplish a specific task and do not
rely on an external state. Functions return the same value if they are called twice (or in
fact infinitely many times) with the same argument. Thus functions can be composed
easily with others and tested separately.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

56

Very important for the choice of the host language is its type system. One way to
produce fully validated programs is to develop the program along with its proof of
correctness. For this we would need a type system that is capable to express the
properties to be proved in the programming language itself. A dependent type system
like the one of Agda or Idris would be suitable.

Another important characteristic of the host language is its efficiency. In practice many
algorithms can be implemented in lazy functional languages like Haskell as efficiently
as in imperative languages. A thorough description of techniques to design efficient
data structures may be found in [52].

As shown above, we have to implement monadic systems. We plan to start with the
approaches outlined in [53], [54] and [55], an associated Haskell library that “allows
exact computation with discrete random variables in terms of their distributions by
using a monad” for simple probability distributions.

Built upon [53], Harvey has developed a “probability” library [56] for Idris. This library
however does not contain the proofs for the monad laws (it uses floating point
numbers to represent the probabilities and for floating point numbers we do not even
have associativity of addition). But it could be a valuable starting point for an
incremental approach [57] towards correctness.

Besides informing the transition functions of SDPs, monads could also represent the
likelihoods of the transition matrices of Hidden Markov Models as demonstrated in
[58].

A data type of fuzzy sets and a comprehensive list of functions to manipulate them
have been described and implemented in Haskell for example in [59]. Furthermore
there is a Haskell library “huzzy” [60].

But as in the case of simple probabilities there is no implementation with a machine
checkable proof of the monad laws. One approach for deriving provably correct
implementations of fuzzy sets, would be to use rational numbers to represent the
membership degrees. A library for rationals (with proofs of basic arithmetic properties)
was implemented only recently in Idris [61].

For rough sets, as far as we know, there exists no implementation in any functional
programming language. On the theoretical level there is a categorical description of
rough sets [62] that might be a starting point for a development of a type theoretical
representation.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

57

Although there are a lot of libraries for interval based numeric for many imperative
programming languages, there is so far no implementation of an interval type or a
library with interval based numeric in any functional programming language.

If we had a provably correct implementation of interval based methods, we could use
them to evaluate the correctness of the components of GSS simulations (which could
be written in C++ or Java for instance).

Some of the components will include the solving of optimization problems. It is known
to be hard to check how good a given implementation of these optimization methods
is. If we had a provable correct implementation, then we would know which solutions
the C++ programs should find.

Thus a provably correct implementation of interval arithmetic is a way to the develop
touchstones for the correctness of GSS simulation software by improving its testability.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

58

6. Hardware	
 and	
 software	
 co-­‐design	

The following chapter will first of all give a short introduction about the co-design
approach in contrast to the classical design approach. For that we will especially refer
to Sanders and Stappers60 where the difference between these two approaches from a
general point of view is analysed in deeper detail.

Once the overview is given and the terminology used throughout this chapter is
clarified, an overview over the currently available and with that the, at the moment,
proposed methods and mechanisms in co-design is given. From this summary a first
layout of the “CoeGSS Co-Design Toolbox” is derived.

6.1 The	
 co-­‐design	
 approach	

In [63] the following three features of the classical design approach are given:

• Centred on a product or a technology.
• The designer conceives of and gives shape to products or a technology.
• Focused on designing products. This means, the features of a product.

To identify whether a product is currently designed by the traditional approach, one
has first to identify the roles of the different parties participating in the design process
and their interaction with each other.

6.1.1 Identification	
 of	
 roles	
 in	
 the	
 design	
 process	
 of	
 a	
 HPC-­‐system	

Regarding the design approach of today’s high performance computing systems (HPC-
systems) these three features can directly be found and the role of the designer of an
HPC-system can be assigned.

First of all, the design of a HPC-System is clearly centred around its technology, which
means mainly its peak performance in terms of floating point operations per second
(FLOPS), its interconnect capabilities in terms of gigabyte per second (GB/s), its storage
capacity and capability as well as its Power consumption. This can be seen from the
fact, that the HPC-systems installed around the world are still ranked in the so called
TOP-500 list61 according to their sustained performance measured with the LINPACK
benchmark.

1 (1) Co-creation and the new landscapes of design, Elisabeth B.-N. Sanders, Pieter Jan Stappers, CoDesign
2008, Vol.4, Iss.1. pp 5-18.
61 http://www.top500.org/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

59

Looking to the TOP-500 list, it can be derived who are the designers of nowadays HPC-
systems giving shape to their technology. At first Intel, as the supplier of the CPUs in
445 systems out of the top 500, has to be mentioned. Intel directly has to be followed
by the HPC-system vendors HP, Cray Inc., Sugon, IBM, SGI, Lenovo and Bull delivering
395 out of the TOP-500 HPC-systems62.

That the design of HPC-systems is focused on designing products is not as clear as the
former two points. For the case of scientific applications discussed here it can in some
sense be derived from the following example of the Byte per FLOP ratio in the current
x86-64 Intel CPUs. With the Haswell architecture [64] this ratio has dropped to 0.142
byte per floating point instruction for a CPU with 2.5 GHz clock rate63. This means (while
getting two floating point values with 8 byte length each from the main memory) the
processor can do 56 cycles or broken down to one byte the FLOP per byte ratio is 7.
From this fact most scientific simulation codes suffer since the algorithms simply do
not deliver the number of floating point operations which have to be applied to the
data in order to satisfy the instructions per byte ratio.

Looking at the CPU development of the last years the drop of the Byte per FLOP ratio
was accelerated by two facts:

(1) The development of the memory clock rate could not keep track with the
development of the CPU clock rate.

(2) Due to the problem that the increase of the CPU clock rate is no longer easily
achievable, the performance of nowadays CPUs is increased by putting more cores
on the die.

This development finally ended up in the fact, that since 2014 an additional ranking for
HPC systems was established due to the problem, that the Linpack benchmark [65]
performance results of the TOP-500 list degenerated to artificial numbers, no longer
achievable with real world applications. This ranking is done by the HPCG benchmark64
which measures the performance of the systems with a conjugate gradient method, by
that being much closer to real scientific simulation applications in its code features and
also in the performance it achieves on modern HPC-Systems. Looking at the HPCG
results65 one can see that only two systems out of the top 10 are able to achieve more
than 2% of their peak performance in this real world benchmark.

62 Data based on the TOP-500 list retrieved on Nov. 30th 2015
63 http://ark.intel.com/products/81908/Intel-Xeon-Processor-E5-2680-v3-30M-Cache-2_50-GHz
64 http://www.hpcg-benchmark.org/index.html
65 http://www.hpcg-benchmark.org/custom/index.html?lid=155&slid=282

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

60

In conclusion one can understand, that seen from the point of view of scientific
simulation application developers and users, aiming to facilitate HPC systems, the
statement, “The design of HPC-systems is focused on designing products” can be
confirmed. This simply reflects the struggle of the application developers and users to
keep track, in the development of the performance of their applications, with the
increasing CPU performance in spite of the dropping byte per flop ratio.

With these considerations in mind, it becomes clear that the role of the HPC system’s
users in the design process is combined of two groups as there are, on the one hand,
the scientific simulation code developers and, on the other hand, the simulation code
users, deploying the application to the HPC systems to solve their problems of a given
kind. In many cases the code developers are also the code users but, for the sake of
generality, we will keep these two groups separately within the role of the users in the
design process.

The third group which, according to Sanders and Steppers, is involved in the design
process are the researchers and / or scientists. In the classical design approach this
group develops theories on how a potential product should be designed or on how a
given product should be used.

In the first case, the theoretical developments are driven by the users who are faced
with given products and the researchers try to develop theories on how to improve
these products according to the user’s current or upcoming needs.

As stated before, in the second case the theoretical developments are driven by the
given product, which means the researchers analyse the product and according to their
findings, try to come up with theories on how the features of the product should be
used to satisfy either the purpose of the products or the needs of the users in the best
possible way.

With respect to the groups, which should be involved in the co-design process within
CoeGSS, the scientists are currently represented by the staff of the participating HPC-
Centres. In Future, once the algorithms and numerical methods to be used for the
different GSS-scenarios are sorted out, it seems to be meaningful, to further extend
the group of scientists to include experts for numerical mathematics, theoretical
algorithm development, compiler theory and HPC-tools development.

With the identified roles in the design process we can now take figure 3 from (1) and
extend it to figure 1, so that it provides a summary of what was stated before.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

61

Figure 10. Roles in the classical design approach

6.1.2 Towards	
 co-­‐design	
 of	
 a	
 GSS	
 ready	
 HPC-­‐System	

As stated in the previous part for the classical design approach, for the co-design
approach [63] defines also four essential features. According to [63] the co-design
approach:

• has to be centred around user’s needs
• has to be focused on designing for a purpose
• needs longer views and addresses larger scopes of inquiry
• requires the change of roles in the design process

That the design of the HPC-systems facilitated for GSS are designed according to these
four features has to be ensured by the CoeGSS co-design toolbox.

To enable the first feature of co-design it has to be clear, what are the user’s needs or
more precise in the given case, what are the user’s needs in HPC and HPC features. As
this is currently under evaluation, only some very general and basic requirements have
already become clear since the project start.

1. HPC-Frameworks for agent based simulations

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

62

As a still ongoing literature review and survey among the project partners,
especially the use case providers, showed, a central simulation paradigm that is
used in GSS are agent based simulations.

2. Analysis tools for large scale heterogeneous datasets

Since one very basic and also crucial part of an agent based simulation is the
modelling of the agent’s state transfer function that represents the behaviour of a
single agent in a given situation, especially for social interactions and decisions of
the agents according to environmental influences and social atmospheres they are
placed in, it will be essential to analyse and interpret sociological data from
different sources and of different type.

3. Fast external connections and accordingly high incoming bandwidth

The third requirement arises directly from the second one, as it cannot be
assumed, that the large scale heterogeneous data sets to be analysed are located
directly inside the analysing HPC-system.

This list is only preliminary. It has to be extended and worked out in more detail during
the next months to evolve towards a requirements catalogue that can be taken into
account as a starting point once the design of a HPC-system intended to be facilitated
by GSS applications is under discussion in a co-design process.

That the focus of the system design has to be centred at GSS applications seems to be
quite obvious especially since the centre point of the co-design process is intended to
be located at CoeGSS. The concentration of GSS and HPC expertise along with the
network that will be established by CoeGSS between the two disciplines and their
connected fields will ensure that the second feature of a well-defined co-design
process, the design for a purpose, is fully regarded.

Enabling the third feature of co-design defined by (1) is probably the most difficult
task to be accomplished within the three years’ duration of the CoeGSS project. But
with the vision to turn CoeGSS in a long term basis for GSS on HPC one can definitely
think of a growing knowledge database that not only includes user requirements, but
also measures how these requirements fit to current systems, how the vendors and
computer scientists estimate the impact of coming developments upon these
requirements and also measures, that give an idea about how the features of the
CoeGSS co-design toolbox influenced the system design and the design process.

The fourth feature of a co-design approach as stated by (1) is from the author’s point
of view the most essential one since it is absolutely necessary to change especially the
roles of users and designers in the design process of a GSS ready HPC-system. The first

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

63

step towards this goal will be to create the awareness for the problems and
requirements of the respective other side and of course the awareness for the CoeGSS
co-design toolbox among GSS users and the vendors. Only if this awareness can be
created, the outcome of the process transformation of the, with the statements made
above, identified classical design process of nowadays HPC systems, towards a co-
design process of GSS ready HPC-systems, can be achieved.

As a visual summary of the targeted outcome of this design process transformation
again an extended version of figure 3 from [63] can be seen in Figure 11.

Figure 11. Co-design approach

6.2 Currently	
 available	
 and	
 proposed	
 methods	
 and	

mechanisms	
 in	
 co-­‐design	

As stated in the previous part, the first and most essential mechanism in co-design is
the awareness creation among the groups participating in the design process for the
problems, needs, tools and methods of the respective other groups participating in the
design process.

6.2.1 GSS-­‐awareness	
 creation	
 on	
 the	
 vendors	
 and	
 computer	

scientists’	
 side	

To spread the word about GSS as a field that is now approaching the world of HPC
applications and generate awareness for the topic among the HPC community,
workshops and conferences are the most suitable mechanism. The CoeGSS Portal will
support this awareness creation by guiding stakeholders about any event that could
be of interest for the GSS and the HPC communities while, at the same time, it will

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

64

facilitate access the publication of guides, white papers and training material related
to these topics.

A list of the events potentially to target is stated below.

• Workshop for sustained simulation performance

The Workshop on Sustained Simulation Performance is a cooperation project
between HLRS and NEC. The workshop is a meeting platform for scientists,
application developers, international experts and hardware designers from
different continents to discuss the current state and future directions of
supercomputing. This includes future hardware architectures, the future style
of programming and directions to highest sustained application performance.

Scientists working in various application areas will present their recent results
and they will share their views to current supercomputer architectures.

See also: http://www.teraflop-workbench.de

• HLRS/hww Workshop on Scalable Global Parallel File Systems

The workshop is organised by The High Performance Computing Center
Stuttgart, HLRS, and the Höchstleistungsrechner für Wissenschaft und
Wirtschaft mbH, hww.

The workshop presented the major issues and developments associated with
the evolution of non-volatile memory and other storage technologies and their
influences on future high performance storage systems leading to "The non-
volatile challenge". This covered all hardware and software solutions as well as
envisaged approaches to solve the issues of handling future amounts of data
in the most efficient and economical way and included the challenges of big
data analytics, analysis and discovery as well as the whole data life cycle from
data generation to data archival especially on high performance systems.

• International Super Computing Conference tells the following:

In 1986 Professor Dr. Hans Werner Meuer, director of the computer centre
and professor for computer science at the University of Mannheim (Germany)
co-founded and organized the "Mannheim Supercomputer Seminar" which
had 81 participants [63]. This was held yearly and became the annual
International Supercomputing Conference [66] and Exhibition (ISC). The
conference is attended by speakers, exhibitors, and researchers from all over
the world. Since 1993 the conference has been the venue for one of the twice

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

65

yearly TOP500 announcements where the fastest 500 supercomputers in the
world are named.

• ACM/IEEE Supercomputing Conference

The ACM/IEEE Supercomputing Conference was established in 1988. The
annual SC conference continues to grow steadily in size and impact each year.
Approximately 5,000 people participate in the technical program, with about
11,000 people overall.

SC has built a diverse community of participants including researchers,
scientists, application developers, computing centre staff and management,
computing industry staff, agency program managers, journalists, and
congressional staffers. This diversity is one of the conference's main strengths,
making it a yearly "must attend" forum for stakeholders throughout the
technical computing community.

The technical program is the heart of SC. It has addressed virtually every area
of scientific and engineering research, as well as technological development,
innovation, and education. Its presentations, tutorials, panels, and discussion
forums have included breakthroughs in many areas and inspired new and
innovative areas of computing.

6.2.2 HPC-­‐awareness	
 creation	
 on	
 the	
 GSS-­‐community	
 and	
 GSS-­‐
application	
 developers	
 and	
 users	
 side	

To create the awareness for HPC, its possibilities, its methods and also its limits among
the GSS-community and GSS-application developers’ workshops, conferences but also
training are the first methods to target since it is an essential step from using and
programming an application for a multicore workstation towards the usage and
application programming for HPC-systems.

As in the previous case, the CoeGSS Portal will aim at articulating the awareness
creation through features which facilitate the publication and access of GSS and HPC
content, such as white papers, success stories, training, etc…

To connect the GSS-community with the HPC-systems’ world the events already
mentioned above for the awareness creation on the HPC-community side are also
appropriate, which are:

• Workshop for sustained simulation performance
• HLRS/hww Workshop on Scalable Global Parallel File Systems

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

66

• International Super Computing Conference [67]
• ACM/IEEE Supercomputing Conference

To get more detailed ideas communicated into the GSS-community the following
courses and workshops can be targeted. First of all for parallel programming methods
in general, second of all introductions and usage techniques for special systems and
last but not least courses that teach their participants how to measure and raise the
performance of their codes. Below a few courses of these three classes are mentioned.

• Parallel Programming (MPI, OpenMP) and Tools

The focus is on programming models MPI and OpenMP. Hands-on sessions (in
C and FORTRAN) will allow users to immediately test and understand the basic
constructs of the Message Passing Interface (MPI) and the shared memory
directives of OpenMP. The last part is dedicated to tools. This course provides
scientific training in Computational Science, and in addition, the scientific
exchange of the participants among themselves. It is organized by ZIH in
collaboration with HLRS. (Content Level: 70% for beginners, 30% advanced)

• Parallel Programming Workshop (MPI, OpenMP and advanced topics)

The course is organized in three sections which have the following content:

Distributed memory parallelization with the Message Passing Interface
MPI (Mon+Tue, for beginners):

On clusters and distributed memory architectures, parallel programming with
the Message Passing Interface (MPI) is the dominating programming model.
The course gives a full introduction into MPI-1. Further aspects are domain
decomposition, load balancing, and debugging. An MPI-3.1 overview and the
MPI one-sided communication is also taught. Hands-on sessions (in C and
FORTRAN) will allow users to immediately test and understand the basic
constructs of the Message Passing Interface (MPI).

Shared memory parallelization with OpenMP-4.0 (Wed, for beginners):

The focus is on shared memory parallelization with OpenMP, the key concept
on hyper-threading, dual-core, multi-core, shared memory, and ccNUMA
platforms. This course teaches shared memory OpenMP parallelization.
Hands-on sessions (in C and Fortran) will allow users to immediately test and
understand the directives and other interfaces of OpenMP. Race-condition
debugging tools are also presented.

Advanced topics in parallel programming with MPI-3.1 (Thu+Fri):

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

67

Topics are MPI-2 parallel file I/O, hybrid mixed model MPI+OpenMP
parallelization, MPI-3.0 and 3.1, parallelization of explicit and implicit solvers
and of particle based applications, parallel numerics and libraries, and
parallelization with PETSc. MPI-3.0 introduced a new shared memory
programming interface, which can be combined with MPI message passing
and remote memory access on the cluster interconnect. It can be used for
direct neighbour accesses similar to OpenMP or for direct halo copies, and
enables new hybrid programming models. These models are compared in the
hybrid mixed model MPI+OpenMP parallelization session with various hybrid
MPI+OpenMP approaches and pure MPI.

Hands-on sessions are included on all days. This course provides scientific
training in Computational Science, and in addition, the scientific exchange of
the participants among themselves.

• Introduction to Hybrid Programming in HPC

Most HPC systems are clusters of shared memory nodes. Such SMP nodes can
be small multi-core CPUs up to large many-core CPUs. Parallel programming
may combine the distributed memory parallelization on the node interconnect
(e.g., with MPI) with the shared memory parallelization inside of each node
(e.g., with OpenMP or MPI-3.0 shared memory). This course analysesanalyses
the strengths and weaknesses of several parallel programming models on
clusters of SMP nodes. Multi-socket-multi-core systems in highly parallel
environments are given special consideration. MPI-3.0 has introduced a new
shared memory programming interface, which can be combined with inter-
node MPI communication. It can be used for direct neighbor accesses similar
to OpenMP or for direct halo copies, and enables new hybrid programming
models. These models are compared with various hybrid MPI+OpenMP
approaches and pure MPI. Numerous case studies and micro-benchmarks
demonstrate the performance-related aspects of hybrid programming.

Tools for hybrid programming such as thread/process placement support and
performance analysis are presented in a "how-to" section. Hands-on exercises
give attendees the opportunity to try the new MPI shared memory interface
and explore some pitfalls of hybrid MPI+OpenMP programming. This course
provides scientific training in Computational Science, and in addition, the
scientific exchange of the participants among themselves.

The course is a PRACE Advanced Training Center event.

• NEC SX-ACE - Vectorization and Optimization

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

68

In spring 2015, HLRS installed a next generation vector computer, a NEC SX-
ACE. The participants learn about the configuration of the NEC SX-ACE system
at HLRS and how to use this cluster of vectorising shared memory nodes. One
focus is an introduction in vectorization. More experienced users can learn
how to optimize programs based on performance measurements. Additional
topics are I/O and the optimization of application programs. The first day
presents an introduction to the NEC SX architecture and vectorization. The
second day morning is focused on usage aspects and the differences between
the predecessor system (NEC SX-9) and the new NEC SX-ACE. The afternoon is
dedicated to hands-on sessions.

• Cray XC40 Optimization, and Parallel I/O Courses

In August 2015, the Cray XC40 supercomputer Hornet at HLRS was upgraded
to a new system named “Hazelhen" featuring 7724 compute nodes, each
equipped with two 12 core Intel Haswell processors running at 2.5 GHz. Each
node is equipped with 128 GB DDR4 memory and connected to the other
nodes through the Cray Aries network. The peak performance amounts to 7.4
PFlops.

In order to help users running efficiently on this new large system, HLRS and
Cray offers a workshop consisting of 3 parts.

Cray XC40/HAZELHEN at HLRS:

The first day gives an overview on this new XC40 system. Specialists from Cray
will talk about the hardware, best practices, and the new software
enhancements, which will allow you to improve your performance on this new
machine.

Efficient Parallel I/O:

The second day is dedicated to use parallel IO at scale, which becomes more
and more important. High performance computing produces drastically
increasing amounts of data, at decreasing time scales. This workshop will cover
parallel file systems, efficient data handling, and efficient parallel IO methods.

Optimization on Cray XC40:

The third and fourth day is mainly intended as a "Bring Your Own Code" (BYOC)
workshop, and will cover the Cray Programming Environment, scientific
libraries and profiling tools. Specialists from Cray will assist profiling and
optimizing your programs.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

69

• OpenMP GPU Directives for Parallel Accelerated Supercomputers

This workshop will cover the programming environment of Cray hybrid
supercomputer, which combines multicore CPUs with GPU accelerators.
Attendees will learn about the directive-based OpenMP programming model
whose multivendor support allows users to portably develop applications for
parallel accelerated supercomputers.

The workshop will also demonstrate how to use the Cray Programming
Environment tools to identify CPU application bottlenecks, facilitate the
OpenMP porting, provide accelerated performance feedback and to tune the
ported applications. The Cray scientific libraries for accelerators will be
presented, and interoperability of OpenMP directives with these and with
CUDA will be demonstrated. Through application case studies and tutorials,
users will gain direct experience of using OpenMP directives in realistic
applications. Users may also bring their own codes to discuss with Cray
specialists or begin porting.

This course provides scientific training in Computational Science, and in
addition, the scientific exchange of the participants among themselves.

Since this list is not exhaustive, in general most of the courses and workshops listed at
the following locations are appropriate to get a more detailed view to HPC, its
techniques and methods and its limits:

• Parallel Programming Workshops and Programming Language Courses 201666
• HLRS Training, Courses and Tutorials - Overview and Course List67
• PRACE Training Events68
• HPC training courses in europe & prace / providers & course lists69

6.2.3 Performance	
 and	
 feature	
 analysis	
 of	
 GSS	
 simulation	

frameworks	
 and	
 tools	

The third pillar of an efficient co-design approach beside the awareness creation
among the participating groups will be the detailed knowledge about the applications

66 http://www.hlrs.de/organization/sos/par/services/training/2016/all
67 http://www.hlrs.de/organization/sos/par/services/training/course-list
68 https://events.prace-ri.eu
69 http://www.hlrs.de/organization/sos/par/services/training/hpc-eu

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

70

the users want to execute on the HPC-system to be designed. This means not only the
necessary features to fulfil the user’s needs when system modelling is concerned like
e.g. a special kind of agent or the possibility to model a certain behaviour of the agents,
but the really detailed ideas about the technical side of the codes bases of the used
applications. All parties participating in the co-design process have to be aware what
kinds of code features are absolutely essential, how they are potentially implemented
and what are the implications of an implementation on the hardware under discussion.

Since most of nowadays software packages are designed for general purpose usage
first of all a kind of benchmark suite consisting of the codes considered by the use case
providers (WP4) has to be assembled which then will be analysed for features that are
really used and executed by the given use cases. Here it will be absolutely essential to
have real world examples delivered by the use case providers since experience with
benchmarks showed, that normally these cases are stripped down to a limit where only
the compute intensive kernels remain. So on the one hand the examples to go into the
benchmark suite have to be real world and have to use all features of the codes under
evaluation that are really needed by the use case providers, but by code analysis is has
to be ensured, that only the used code parts which show essential resource
consumption find their way into the CoeGSS co-design toolbox.

This feature analysis has already been started among the use case providers that is,
the codes targeted by the use case providers will be analysed for the features really
used by the given case. The first code base that will be analysed is the GLEAM
Simulator70

The analysis will be carried out by the current state of the art tools in code analysis and
performance monitoring:

• CrayPat71 – performance analysis tool designed for Cray XC platforms.

License: commercial

• VAMPIR72 – graphical tool for performance analysis.

License: commercial

70 http://www.gleamviz.org/simulator
71 http://docs.cray.com/books/S-2315-52/html-S-2315-52/z1076617932brbethke.html
72 https://www.vampir.eu/

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

71

• VTUNE73 – tool for CPU & GPU performance analysis, bandwidth, cache and
scalability examination is supported.

License: commercial, trial available

• TotalView74 - allows to debug and monitor high-scale parallel applications and
provides tools for controlling process and threads execution.

License: commercial

• Valgrind75 - framework debugging and profiling applications, allows to detect
memory management bugs.

License: GNU license

• DDT76 - designed for debugging C, C++ and F90 applications, provides support
for multi-process and multi-threaded applications.

License: commercial

As the tools listed above all distributed under proprietary license, in a second step an
evaluation will be carried out whether open source tools are capable to return the
performance numbers and analyses, the tools listed above are able to deliver.

73 https://software.intel.com/en-us/intel-vtune-amplifier-xe
74 http://www.roguewave.com/products-services/totalview
75 http://valgrind.org
76 http://www.allinea.com/products/ddt

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

72

6.3 CoeGSS	
 Co-­‐Design	
 Toolbox	

Based on the statements made above the first layout of the CoeGSS co-design toolbox
can be defined as shown by Figure 12.

Figure 12. CoeGSS co-design toolbox

GSS ready HPC systems

CoeGSS co-design toolbox

 Awareness

Creation

 Knowledge

 Base

GSS-community

HPC-community

Vendors

Hardware

Software

Analysis Methods

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

73

7. Summary	

This deliverable represents the first official deliverable of work package 3 of the CoeGSS
project. It details the work performed during the first four months of the project
lifetime. Particular attention has been put on the available methods and tools, which
can be (re)used by the CoeGSS project. The main goal of this deliverable is to present
state-of-the-art in available mechanisms and software in order to clearly define a
starting point in our analysis which allow us to identify gaps and next tasks need in
following steps.

In the document we presented tools which can potentially be used for efficient data
management and dealing with fault tolerance problems in GSS systems. Remote and
immersive visualisation systems which were introduced next are important to explore,
investigate and analyse GSS related data. Brief evaluation of available software for
creating and running GSS synthetic populations, and for designing and implementing
domain-specific languages (DSLs) were presented in the section 5. Next, we presented
a type theoretical approach to represent different kinds of uncertainty including a short
overview of existing implementations that will become a starting point for the DSLs and
for the development of validated numerical methods. These will then help to ensure
the correctness of the components of the GSS simulations and to quantify the
uncertainty of the output data. Finally, analysis concerning the co-design approach in
contrast to the classical design approach was given which is necessary to comply with
all requirements stated by GSS.

As it was mentioned before all this works was performed to indicate the starting point
in our GSS implementation. In the next steps we will focus on identifying gaps between
this and what is needed to provide fully functional GSS system with particular emphasis
on specified use cases.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

74

References	

[1] B. Tierney, E. Kissely, M. Swany and E. Pouyoul, “Efficient Data Transfer
Protocols for Big Data,” Lawrence Berkeley National Laboratory, Berkeley, CA
94270, School of Informatics and Computing, Indiana University,
Bloomington, IN 47405, [Online]. Available:
https://www.es.net/assets/pubs_presos/eScience-networks.pdf.

[2] ScienceDaily, “Big Data, for better or worse: 90% of world's data generated
over last two years,” [Online]. Available:
http://www.sciencedaily.com/releases/2013/05/130522085217.htm.

[3] “RDMA over Converged Ethernet,” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet.

[4] “Apache Hadoop,” [Online]. Available: https://hadoop.apache.org/.

[5] “Lustre,” [Online]. Available: http://lustre.org/.

[6] S. M. Hosseini and M. G. Arani, “Fault-Tolerance Techniques in Cloud
Storage: A Survey,” International Journal of Database Theory and Application ,
Vols. Vol.8, No.4, pp. pp.183-190, 2015.

[7] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan and D. I. August, “SWIFT:
Software Implemented Fault Tolerance,” Departments of Electrical
Engineering and Computer Science Princeton University, [Online]. Available:
http://liberty.cs.princeton.edu/Publications/cgo3_swift.pdf.

[8] “Berkeley Lab Checkpoint/Restart (BLCR),” [Online]. Available:
http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/.

[9] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama and S.
Matsuoka, “FTI: high performance fault tolerance interface for hybrid
systems,” in In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, 2011.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

75

[10] J. Ansel, K. Arya and G. Cooperman, “DMTCP: Transparent checkpointing for
cluster computations and the desktop,” in In Parallel & Distributed Processing.
IPDPS 2009., 2009.

[11] C. Niederauer, “Non-Invasive Interactive Visualization of Dynamic
Architectural Environments,” in SIGGRAPH 2003, San Diego, Califonia, USA,
2003.

[12] G. Humphreys, “Chromium: A Stream-Processing Framework for Interactive
Rendering on Clusters,” in SIGGRAPH 2002, San Antonio, Texas, USA, 2002.

[13] D. Rantzau, K. Frank, U. Lang, D. Rainer and U. Wössner, “COVISE in the
CUBE: An Environment for Analyzing Large and Complex Simulation Data,” in
2nd Workshop on Immersive Projection Technology (IPT '98), Ames, Iowa, 1998.

[14] F. Niebling, R. T. Griesser and U. Woessner, “Using Augmented Reality and
Interactive Simulations to Realize Hybrid Prototypes,” in 4th International
Symposium on Advances in Visual Computing (ISVC), Las Vegas, USA, December
1-3, 2008.

[15] B. e. al., “High Performance Visualisation,” CRC Press, 2013.

[16] K. Misegades, “EnSight's Parallel Processing Changes the Performance
Equation,” 2002. [Online]. Available: https://www.ceisoftware.com/wp-
content/uploads/2012/05/parallel.pdf.

[17] K. Misegades, “Virtual Reality is the Real Deal for Visualization Applications,”
2002. [Online]. Available: https://www.ceisoftware.com/wp-
content/uploads/2012/05/vrfeat.pdf.

[18] “Paraview Flavors,” [Online]. Available: http://www.paraview.org/flavors/.

[19] J. Ahrens, B. Geveci and C. Law, “ParaView: An End-User Tool for Large Data
Visualization.,” Los Alamos National Laboratory, [Online]. Available:
https://datascience.lanl.gov/data/papers/ParaView.pdf.

[20] M. Rivi, “In-situ Visualization: State-of-the-art and Some Use Cases. White
Paper.,” 2011. [Online]. Available: http://www.prace-ri.eu/IMG/pdf/In-
situ_Visualization_State-of-the-art_and_Some_Use_Cases.pdf.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

76

[21] C. Johnson, S. Parker and D. Weinstein, “Large-Scale Computational Science
Applications Using the SCIRun Problem Solving Environment,” in Proceedings
of the 2000 ACM/IEEE Conference on Supercomputing, 2000.

[22] S. G. Parker and C. R. Johnson, “SCIRun: A Scientic Programming
Environment for Computational Steering,” in Proceedings of ACM/IEEE
Supercomputing Conference (SC), 1995.

[23] “SCIRun/BioPSE Documentation,” [Online]. Available:
http://scirundocwiki.sci.utah.edu/SCIRunDocs/index.php5/CIBC:Documentati
on:SCIRun:UserGuide:Concepts.

[24] M. Schirski, “ViSTA FlowLib - a framework for interactive visualization and
exploration,” in Seventh Immersive Projection Technology Workshop, Ninth
Eurographics Workshop on Virtual Environments, Zurich, Switzerland, May 22 -
23, 2003.

[25] T. Kuhlen, T. Beer and A. Gerndt, “The ViSTA Virtual Reality Toolkit,” in 5th
High-End Visualization Workshop, Baton Rouge, Lousianna, USA, 2009.

[26] V. Pascucci, G. Scorzelli, B. Summa, P.-T. Bremer, A. Gyulassy, C. Christensen,
S. Philip and S. Kumar, “The ViSUS Visualization Framework,” High
Performance Visualization: Enabling Extreme-Scale Scientific Insight, 2012.

[27] M. Fowler, “Domain-Specific Languages,” in Pearson Education, 2010.

[28] J. J. Grefenstette, S. T. Brown, R. Rosenfeld, J. DePasse, N. T. Stone, P. C.
Cooley and W. D. Wheaton, “FRED (a Framework for Reconstructing Epidemic
Dynamics): an Open-Source Software System for Modeling Infectious
Diseases and Control Strategies Using Census-Based Populations,” in BMC
Public Health 13 (1): 940, 2013.

[29] F. Martínez and P. Donoso, “The MUSSA II Land Use Auction Equilibrium
Model,” in In Residential Location Choice, 99–113. Springer, 2010.

[30] C. Barrett, K. Bisset, J. Leidig, A. Marathe and M. Marathe, “An Integrated
Modeling Environment to Study the Coevolution of Networks, Individual
Behavior, and Epidemics,” AI Magazine 31 (1), p. 75, 2010.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

77

[31] K. R. Bisset, X. Feng, M. Marathe and S. Yardi, “Modeling Interaction Between
Individuals, Social Networks and Public Policy to Support Public Health
Epidemiology,” in In Simulation Conference (WSC), Proceedings of the 2009
Winter, 2020–2031. IEEE, 2009.

[32] J.-S. Yeom, A. Bhatele, K. Bisset, E. Bohm, A. Gupta, L. V. Kale, M. Marathe, D.
S. Nikolopoulos, M. Schulz and L. Wesolowski, “Overcoming the Scalability
Challenges of Epidemic Simulations on Blue Waters,” in In Proceedings of the
2014 IEEE 28th International Parallel and Distributed Processing Symposium,
755–764. IPDPS ’14. Washington, DC, USA: IEEE Computer Society.
doi:10.1109/IPDPS.2014.83, 2014.

[33] K. R. Bisset, J. Chen, X. Feng, Y. Ma and M. V. Marathe, “Indemics: an
Interactive Data Intensive Framework for High Performance Epidemic
Simulation,” in In Proceedings of the 24th ACM International Conference on
Supercomputing, 233–242. ICS ’10. New York, NY, USA: ACM.
doi:10.1145/1810085.1810118, 2010.

[34] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng and M. V. Marathe,
“EpiSimdemics: an Efficient Algorithm for Simulating the Spread of Infectious
Disease over Large Realistic Social Networks,” in Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, Piscataway, NJ, USA, 2008.

[35] P. F. Gorder, “Computational Epidemiology,” in Computing in Science &
Engineering 12 (1): 4–6, 2010.

[36] S. Kumar, J. J. Grefenstette, D. Galloway, S. M. Albert and D. S. Burke, “Policies
to Reduce Influenza in the Workplace: Impact Assessments Using an Agent-
Based Model,” in American Journal of Public Health 103 (8): 1406–1411, 2013.

[37] C. L. Barrett, K. R. Bisset, J. Leidig, A. Marathe and M. V. Marathe, “Estimating
the Impact of Public and Private Strategies for Controlling an Epidemic: a
Multi-Agent Approach,” In IAAI, 2009.

[38] D. Roberts, “ABM++ Download Site,” 2013.

[39] X. Rubio-Campillo, “Pandora: a Versatile Agent-Based Modelling Platform for
Social Simulation,” in Proceedings of SIMUL 2014, The Sixth International
Conference on Advances in System Simulation: 29–34., 2014.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

78

[40] M. J. North, N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal, M. Bragen and P.
Sydelko, “Complex Adaptive Systems Modeling with Repast Simphony,” in
Complex Adaptive Systems Modeling 1 (1): 1–26, 2013.

[41] C. Nicholson and M. North, “Parallel Agent-Based Simulation with Repast for
High Performance Computing,” in Simulation: 0037549712462620, 2012.

[42] N. Minar, R. Burkhart, C. Langton and M. Askenazi, “The Swarm Simulation
System: a Toolkit for Building Multi-Agent Simulations,” in Working Paper
07/1996; 96-06-042. Santa Fe Institute Santa Fe, 1996.

[43] A. Rob, “Survey of Agent Based Modelling and Simulation Tools,” 2011.
[Online]. Available: http://www.grids.ac.uk/Complex/ABMS/.

[44] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan and G. Balan, “Mason: a
Multiagent Simulation Environment,” in Simulation 81 (7): 517–527, 2005.

[45] M. Holcombe, S. Coakley and R. Smallwood, “A General Framework for
Agent-Based Modelling of Complex Systems,” in In Proceedings of the 2006
European Conference on Complex Systems. European Complex Systems Society
Paris, France, 2006.

[46] M. Kiran, P. Richmond, M. Holcombe, L. S. Chin, D. Worth and C. Greenough,
“FLAME: Simulating Large Populations of Agents on Parallel Hardware
Architectures,” in In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: Volume 1-Volume 1, 1633–1636.
International Foundation for Autonomous Agents; Multiagent Systems, 2010.

[47] N. Botta, P. Jansson and C. Ionescu, “A computational theory of policy advice
and avoidability,” 2015.

[48] R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis,
2009.

[49] G. Alefeld and J. Herzberger, Einführung in die Intervallrechnung,
Mannheim/Wien/Zürich: B.I. Wissenschaftsverlag, 1974.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

79

[50] R. Moore, W. Lodwick and R. Albrecht, “Special issue: interfaces between
fuzzy set theory and interval analysis,” vol 135 issue 1 of Fuzzy sets and
systems, 2003.

[51] W. Tucker, Validated Numerics: A Short Introduction to Rigorous
Computations, Princeton: Princeton University Press, 2011.

[52] R. Bird, G. Jones and O. de Moore, “More Haste, Less Speed:Lazy Versus
Eeager Evaluation,” Journal of Functional Programming, vol. 7, no. 5, pp. 541-
547, 1997.

[53] M. Erwig and S. Kollmansberger, “The probability package, version 0.2.5,”
hackage.haskell.org/package/probability, 2015-09-03.

[54] M. Erwig and S. Kollmansberger, “Functional Pearls Probabilistic Functional
Programming in Haskell,” Journal of Functional Programming, 2006.

[55] C. Ionescu, Vulnerability, Doctoral thesis, 2008.

[56] C. Harvey, “probability,” GitHub.com/blackbrane/probability, 2015.

[57] C. Ionescu, “Increasingly Correct Scientific Computing,” in CICM 2012,
Bremen, 2012.

[58] A. Scibior, Z. Ghahramani and A. D. Gordon, “Practical Probabilistic
Programming with Monads,” Haskell 2015 Proceedings of the 8th ACM SIGPLAN
Symposium on Haskell, pp. 165-176, 2015.

[59] G. Meehan and M. Joy, “Animated Fuzzy Logic,” Journal of Functional
Programming, vol. 1, no. 1, 1993.

[60] J. Nash, “The hyzzy package,” https://hackage/haskell.org/package/huzzy,
2014.

[61] N. R. Botta,
“https://github.com/nicolabotta/SeqDecProbs/tree/master/frameworks/14-,”
2015.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

80

[62] P. Eklund, M. Galan and J. Karlsson, “Categorical Innovations for Rough Sets,”
in Rough Set Theory a True Landmark in Data Analytics, Berlin Heidelberg,
Springer, 2006, pp. 45-69.

[63] E. B.-N. Sanders and P. J. Stappers, “Co-creation and the new landscapes of
design,” in CoDesign, vol. Vol. 4, 2008, pp. 5-18.

[64] “Haswell (microarchitecture),” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Haswell_%28microarchitecture%29.

[65] “LINPACK benchmarks,” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/LINPACK_benchmarks.

[66] “International Supercomputing Conference,” [Online]. Available:
https://en.wikipedia.org/wiki/International_Supercomputing_Conference.

[67] “The SC Conference Series,” [Online]. Available:
http://www.supercomputing.org/about.php.

[68] C. Osaka, Purely functional Data Structures, 1998.

[69] C. Harvey, “probability,” GitHub.com/blackbrane/probability.

[70] A. Constantinos, H. N. Koutsopoulos, B.-A. Moshe and A. S. Chauhan,
“Evaluation of Diversion Strategies Using Dynamic Traffic Assignment,”
Transportation Planning and Technology 34 (3), p. 199–216, 2011.

[71] “Economic and Social Impact of Influenza Mitigation Strategies by
Demographic Class,” Epidemics 3 (1), p. 19–31, 2011.

[72] D. Grether and K. Nagel, “Extensible Software Design of a Multi-Agent
Transport Simulation,” in Procedia Computer Science 19: 380–388, 2013.

[73] M. Rieser, K. Nagel, U. Beuck, M. Balmer, J. Rümenapp and G. G. Rümenapp,
“Truly Agent-Oriented Coupling of an Activity-Based Demand Generation
with a Multi-Agent Traffic Simulation,” 2006.

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

81

[74] P. Waddell, “Integrated Land Use and Transportation Planning and
Modelling: Addressing Challenges in Research and Practice,” in Transport
Reviews 31 (2): 209–229, 2011.

[75] S. W. Hodson, S. W. Poole, T. M. Ruwart and B. W. Settlemyer, “Moving Large
Data Sets Over High-Performance Long Distance Networks,” Oak Ridge
National Laboratory, [Online]. Available:
http://info.ornl.gov/sites/publications/files/Pub28508.pdf.

[76] “How HPC is Hacking Hadoop,” [Online]. Available:
http://www.hpcwire.com/2014/02/11/hpc-hacking-hadoop/.

[77] “Adapting Hadoop to HPC Environments,” [Online]. Available:
http://www.hpcwire.com/2014/02/14/adapting-hadoop-hpc-environments/.

[78] D. Krishnan, M. Tatineni and C. Baru, “myhadoop-hadoop-on-demand on
traditional hpc resources,” San Diego Supercomputer Center Technical
Report TR-2011-2, University of California, San Diego, 2011.

[79] “MyHadoop,” [Online]. Available:
https://github.com/glennklockwood/myhadoop.

[80] “Running Hadoop Clusters on Gordon,” [Online]. Available:
http://users.sdsc.edu/~glockwood/di/hadoop-hpc.php.

	

List	
 of	
 tables	

Table 1. Visualisation software evaluation 36
Table 2. Activity patterns as building blocks 38

List	
 of	
 figures	

Figure 1. Using the same agent over different channels to communicate sources 14
Figure 2. Flume Event Manager pipelines 14
Figure 3. The Chromium Project 22
Figure 4. COVISE / OpenCOVER 24
Figure 5. CEI EnSight 27

 D3.1 - AVAILABLE METHODS, TOOLS AND MECHANISMS

82

Figure 6. ParaView, 28
Figure 7. SCIRun, 30
Figure 8. ViSTA VR toolkit 32
Figure 9. The ViSUS Visualization Framework 34
Figure 10. Roles in the classical design approach 61
Figure 11. Co-design approach 63
Figure 12. CoeGSS co-design toolbox 72

List	
 of	
 Abbreviations	

DoW Description of Work

EC European Commission

EGI European Grid Infrastructure

CoeGSS Center of Excellence for Global System Science

ESFRI European Strategy Forum on Research Infrastructures5

HPC High Performance Computing

HPDA High Performance Data Analysis

ToR Terms of Reference

WP Work Package

