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Abstract 

This deliverable is the third report on pilot requirements to the Centre of Excellence for Global 

Systems Science, and hence acts as the third and last official version of the living document 

begun with D4.1 and continued with D4.2. It complements the previous versions with 

requirements that became apparent as the project work progressed; in particular, pilot 

models have been implemented now need to be thoroughly analysed. 

The three pilot studies represent typical applications of Global Systems Science. They develop 

synthetic information systems, that is, computer simulation based tools to help explore and 

understand global challenges. In particular, the Health Habits pilot addresses the tobacco 

epidemics, the Green Growth pilot studies the diffusion of electric vehicles in the global car 

market, and the Global Urbanisation pilot analyses two-way relations between transport 

infrastructure and real-estate pricing. 

Previous requirements remain valid without being repeated in this version of the deliverable, 

and further discussion of the requirements presented here is foreseen in working groups as 

needed. 
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1 Introduction 
Following up on D4.1 and D4.2, this deliverable presents an update on pilot requirements to 

the Centre of Excellence for Global Systems Science (CoeGSS). 

The pilot studies of CoeGSS address three example challenges in different fields of Global 

Systems Science (GSS). The Health Habits pilot studies smoking epidemics, the Green Growth 

pilot models the diffusion of electric vehicles in the global car fleet, and the Global 

Urbanisation pilot relates transport infrastructure and real-estate pricing. Each pilot develops 

a synthetic information system (SIS) for analysing potential evolutions of the global system 

underlying the question that is addressed. Briefly summarised, this means a model is defined 

and data collected in order to implement an agent-based model (ABM); agents are taken from 

a synthetic population, which statistically matches the real-world population for relevant 

aspects; simulations of the ABM are then analysed to explore and understand potential 

evolutions of the system (for more detail, see D4.1 – First Report on Pilot Requirements and 

D4.4 – First Status Report of the Pilots). Together, the pilot studies are thus working towards 

defining the requirements for a framework for generating such synthetic information systems 

that provide simulation tools to explore global systems. 

Throughout the project work, requirements for the development of an HPC-based SIS for GSS 

have been worked out. At the very beginning of the project, D4.1 specified the steps involved 

in developing and using SIS, and provided initial requirements in terms of data and software 

for the different pilots. Then, D4.2 further specified requirements on data collection and pre-

processing, synthetic populations, synthetic networks, a GSS-specific ABM-framework, and SIS 

analysis tools. These points were treated with a level of detail adapted to the current state of 

pilot in both cases. In particular, in a phase where model implementation was the main focus, 

the requirements on an ABM-framework were a focus area in D4.2. In the meantime, pilot 

models have been implemented and calibrated up to a point where now simulation analysis 

plays a more important role. Therefore, this iteration of the pilot requirements focuses on 

running model simulations and analysing these. First, Section 2 collects aspects of what pilot 

(and more generally, GSS) modellers consider “easy access” to computing resources for 

running models. Then, Section 3 describes different techniques the pilots want to use for 

model simulation output analysis and specifies the requirements that come with them. 

Section 4 concludes. 
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2 Easy Access 
“Easily accessible computational resources” were mentioned as one of the needs on the GSS 

side, while an offer from the HPC side was described as “Resource access, Access to the 

HPC/HPDA infrastructure” in the answers to a project internal questionnaire (see D2.2). A 

group discussion at the recent project plenary meeting in Lucca (October 26-27, 2017) pointed 

out that in order to better match demand and offer, the question of what GSS modellers 

consider “easy access” should be further specified. The following list provides details on easy 

access requirements. 

• HLRS and PSNC are using different batch systems, so it is necessary to write/adjust batch 

scripts individually for each system. A workflow engine like OpenMOLE 

(https://next.openmole.org/) could unify these systems, and would naturally also ease 

the construction of workflows. Submitting many jobs for ensemble computation is one 

requirement in GSS modelling that is part of a typical workflow. OpenMOLE itself was 

tested by the Green Growth pilot, but with mixed results, e.g. OpenMOLE did not 

recognise when a job was finished – neither on the Hazelhen at HLRS nor on the Eagle at 

PSNC. Currently Dakota (see 3.3.3) is evaluated as a different tool that supports ensemble 

computation. For this, it is required that some example scripts are created which run on 

the Hazelhen at HLRS as well as on the Eagle at PSNC and which hide the system specific 

parts in subscripts. The description of a Green Growth pilot workflow (which can be found 

in Appendix A) can be used as a draft, but needs integration with Dakota and a more 

generalised approach. 

• Installing packages manually, for example for Python, R, or the CoSMo Simulation Suite, 

is labour-intensive, as many packages have a lot of dependencies on other packages. At 

HLRS the access to the Internet is restricted, so that the package manager cannot 

download the packages from their repositories automatically. There exists a solution 

using a Squid proxy server on the client, but a better documentation which can be easily 

accessed on the HLRS wiki or the CoeGSS portal would be useful. This documentation 

should include examples for the package managers of the tools used in CoeGSS, which 

are pip for Python and sbt for Scala/Spark, and for R (which has its package manager 

integrated). 

• Testing the newly developed modules for Covise currently needs a local installation and 

requires compiling the sources, as the installed version of Covise on the Visualisation 

nodes at HLRS does not include these modules. An installation at HLRS and PSNC, 

together with a good documentation for the new modules and the access to Covise on 

both locations, or how this is handled via the portal, is needed to enable GSS users to 

benefit from Covise visualisation capabilities. 

https://next.openmole.org/
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3 Simulation output analysis 
In the iterative process of developing a GSS-SIS, as well as when using it, simulation output 

analysis plays an important role. Dynamics in an ABM are defined on the micro-level: agents 

are equipped with decision rules, and, agents, the networks between them, and their 

environment can be equipped with update rules. The resulting overall system dynamics is not 

described by given macro-level equations, but is observed in output from simulation runs. 

Moreover, ABMs are generally stochastic, meaning that not single, but groups of simulation 

runs need to be observed and thus analysed. One particular task that requires output analysis 

is that of parameter calibration. This section presents three ways in which pilots intend to 

carry out their model output analysis and specifies the corresponding requirements. 

3.1 Markov-Chain-Monte-Carlo 
Markov-Chain-Monte-Carlo (MCMC) is a technique for performing integration with 

simulations (Gilks, 2005; Gilks, Richardson, & Spiegelhalter, 1995). The goal of the MCMC 

implementation is to expand the classical Monte Carlo integration technique to account for 

cases in which the density distribution of the parameters is unknown. Specifically, suppose 

that we want to evaluate the expectation value of a given function 𝑔(𝐩) over a probability 

density 𝑓(𝐩): 

⟨𝑔(𝐩)⟩𝑓 = ∫ 𝑔(𝐩)𝑓(𝐩)𝑑𝐩, (3.1) 

where 𝐩 is an array of parameters and/or models unknown (e.g., missing data). 

If we can draw sample 𝐩0, 𝐩1, ⋯ , 𝐩𝑁−1 independently from 𝑓(𝐩) we can approximate ⟨𝑔(𝐩)⟩𝑓 

with the usual Monte Carlo integration: 

⟨𝑔(𝐩)⟩𝑓 ≃
1

𝑁
∑ 𝑔(𝐩𝑖)

𝑁−1

𝑖=0

. (3.2) 

In the Bayesian approach, 𝑓(𝐩) is rather a posterior distribution 𝑓(𝐩|𝐱) over the observed 

data 𝐱. Moreover, 𝐩 may be high-dimensional and the functional form of 𝑓(𝐩|𝐱) may be non-

analytical so that generating an independent sampling from 𝑓(𝐩|𝐱) is generally unfeasible. 

MCMC solves this issue by generating a Markov chain of dependent samples 𝐩0, 𝐩1, ⋯ , 𝐩𝑁−1, 

where each parameter value 𝐩𝑖  depends on the previous value 𝐩𝑖−1 only and on the selected 

update rule. The only requirement on the chain is that (i) its stationary distribution is the target 

distribution 𝑓(𝐩|𝐱) and (ii) Eq. (3.2) holds, i.e., the sum gives a good approximation of the 

expectation value ⟨𝑔(𝐩)⟩𝑓. 

These requirements are easily fulfilled if the chain is created using the Metropolis-Hasting 

algorithm that we quickly summarise here and in Fig. 3.1 (a). To construct a chain starting from 

a parameter configuration 𝐩𝑡=0, for each step 𝑡 do: 

• propose a parameter candidate 𝐩′ starting from a proposal distribution 𝑞(⋅ |𝐩𝐭); 
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• accept the proposal and set 𝐩𝑡+1 = 𝐩′ with probability 

𝑝(𝐩𝑡, 𝐩′) = min [1,
ℒ(𝐱|𝐩′) 𝑓 (𝐩′)𝑞(𝐩𝑡|𝐩′)

ℒ(𝐱|𝐩𝐭) 𝑓 (𝐩𝐭)𝑞(𝐩′|𝐩𝑡)
, ] (3.3) 

• where ℒ(𝐱|𝐩) is the likelihood to observe the data 𝐱 given the model parameters 𝐩 and 

𝑓 (𝐩) is the assumed a-priori distribution of the parameters. With probability 1 −

𝑝(𝐩𝑡, 𝐩′) the parameters are instead left untouched and 𝐩𝑡+1 = 𝐩𝑡. 

The posterior distribution of the parameter 𝑓(𝐩|𝐱) is then given by the values of 𝐩𝑖, 𝑖 ∈

[0, 𝑁 − 1] explored by the chain in the 𝑁 evolution steps. 

In the following, we will consider the proposal distribution 𝑞(⋅ |𝐩𝐭) to be a random walk with 

Gaussian noise in the parameter space, i.e., 𝐩′ = 𝐩𝐭 + 𝒩𝜎, with 𝒩𝜎 a vector of same length as 

𝐩 whose entries are i.i.d. Gaussian variables with mean zero and standard deviation 𝜎. From 

the implementation side, different empirical recommendations are found in literature, 

concerning the acceptance rate, i.e., the rate given by Eq. (3.3) by which new configurations 

are accepted in the second step of the MCMC procedure (that should be ∼ 25%), the length 

of the chains, etc. (Foreman-Mackey, Hogg, Lang, & Goodman, 2013; Gilks, 2005; Gilks et al., 

1995). 

 

Figure 3.1 – (a) The implementation of a MCMC chain. An initial parameter proposal 𝐩𝒕=𝟎 
is extracted and the corresponding initial reference likelihood 𝓛𝒕=𝟎 = 𝓛(𝐩𝟎) is computed 

(orange boxes). Then, for each step of the chain we propose a parameter update 𝐩′ = 𝐩𝒕 +
𝓝 and compute its likelihood 𝓛′ = 𝓛(𝐩′) (third and fourth boxes). We accept this update 

with probability 𝓛′/𝓛𝒕 (green box) thus setting 𝐩𝒕+𝟏 = 𝐩′ and updating the likelihood 
accordingly (yes option). Otherwise we set 𝐩𝒕+𝟏 = 𝐩𝒕 (no option) and pass to the next 

chain step 𝒕 + 𝟏. (b) An overview of the parallel tempering scheme with four chains 
featuring four different temperatures 𝑻𝒄 (𝑻𝒄 rising from left to right). We focus on chain 𝒄𝟐 
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that can exchange its configuration with the colder chain 𝒄𝟏 or with the hotter one 𝒄𝟑 with 
probabilities given in Eq. (3.4). 

One of the issues frequently encountered in the MCMC model calibration is the number of 

steps required for a chain to converge to the stationary distribution of 𝑓(𝐩|𝐱), which is usually 

of the order of thousands of steps. This aspect is particularly relevant in large ABM simulations 

that take several minutes to compute a single simulation of the system. When simulating such 

systems, chains of MCMC integration cannot be made arbitrarily long while keeping the 

constraint of having an acceptable computation time. That is why several methods to speed-

up the convergence of a chain have been put forward (Angelino, Kohler, Waterland, Seltzer, 

& Adams, 2014; Brockwell, 2006; Earl & Deem, 2005; Foreman-Mackey et al., 2013; Goodman 

& Weare, 2010; Swendsen & Wang, 1986; VanDerwerken & Schmidler, 2013). 

All of these methods leverage on the parallel execution of different chains to improve the 

exploration of a single chain or to better sample the parameter space. Among them, the 

parallel tempering (Earl & Deem, 2005; Swendsen & Wang, 1986) implementation relies on 𝐶 

MCMC chains running in parallel. The chains feature different “temperatures” 𝑇𝑐, i.e., the 

proposed parameter update in each chain is computed using a different standard deviation 

𝜎𝑐, with 𝑐 ∈ [1, 𝐶]. In other words, the size of the random “kick” given to the parameters’ 

values at each evolution step will be larger for larger values of 𝜎𝑐 that intuitively correspond 

to higher temperatures as the system is able to explore more valleys of the 𝑓(𝐩|𝐱) posterior 

distribution in fewer steps. 

Each chain 𝑐 is then communicating with its two neighbours 𝑐 − 1 and 𝑐 + 1 to exchange their 

parameter configurations 𝐩𝑐 with a probability depending on the score of the model ℒ(𝐱|𝐩𝐜) 

and the temperature 𝑇𝑐 of the 𝑐-th and 𝑐 ± 1-th chains. Specifically, chain 𝑐 and 𝑐 + 1 will 

switch their configuration if: 

𝑢 < exp[(𝑇𝑐
−1 − 𝑇𝑐+1

−1 )(ℒ𝑐
−1 − ℒ𝑐+1

−1 )], (3.4) 

where 𝑢 is a randomly generated number uniformly distributed in the [0,1) range, and ℒ𝑖  is 

the likelihood of the model using the current parameter configuration of the 𝑖-th chain. 

Stated differently, the hotter chains are responsible for an overall, fast exploration of the 

parameter space. Once they find a well-performing region of parameters, they can propagate 

their current configuration to the colder chains that will explore the proposed area in more 

detail. A pictorial representation of this procedure is given in Fig. 3.1 (b). 
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Figure 3.2 – Single chain (a) and the colder chain in an eight-chains parallel tempering (b) 
evolution (solid lines) for an MCMC process integrating the model found in Eq. (3.5) for 𝟓 ⋅

𝟏𝟎𝟒 steps with 𝒄𝟎 = −𝟏. 𝟓 (blue dashed line) and 𝒄𝟏 = 𝟏. 𝟓 (orange dashed line). We 
report the overall probability density distribution 𝑷(𝒑) for each parameter (points and 

solid lines) for the single chain case (c) and for the colder chain of the eight-chains parallel 
tempering (d). Reference values are shown with dashed lines. 

To demonstrate the efficiency of the parallel tempering we implemented a prototype of the 

parallel tempering scheme of MCMC. The code uses the MPI environment to let the chains 

communicate and synchronise and each node manages the evolution of one single chain. 

By now we focus on a simple model with two parameters 𝐩 = (𝑝0, 𝑝1) to fit given by: 

ℒ(𝐩) = (∏  

1

𝑖=0

[1 + cos (
𝑝𝑖 − 𝑐𝑖

𝜎𝑖
)] +

1

2
exp [−

(𝑝𝑖 − 𝑐𝑖)
2

2𝜎𝑖
2 ]) + 0.05, (3.5) 

where 𝐜 = (𝑐0, 𝑐1) and 𝛔 = (𝜎0, 𝜎1) are the model’s fixed parameters and where we added 

the 0.05 constant to avoid divergences when computing ℒ−1. 

In Fig. 3.2 we compare the fitting results on 𝐩 of a single MCMC chain and an eight-chains 

parallel tempering run of 5 ⋅ 104 steps each where we set 𝛔 = (0.5,1. ), 𝐜 = (−1.5,1.5). We 

used the kick size 𝜎 = 0.02 for each parameter in the single chain whereas we use eight 

linearly spaced values 𝜎𝑐 ∈ [0.02,2] for each chain 𝑐 of the parallel tempering case. We 

extracted the initial parameters uniformly in the 𝐩 ∈ [−10,10] × [−10,10] square. We always 

keep the colder chain of the parallel tempering as the reference chain to compare with the 

single chain case. 

As one can see the convergence of the parallel tempering to the right configuration of the 

parameters is faster thanks to the hotter chains that broadcast their best regions found to the 
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colder, slower chains. On the other hand, the single chain slowly samples the parameter space 

and it does not even find the correct parameter region even after 50 thousand evolution steps. 

The model presented here is simple and runs in a few milliseconds on a single computing node 

so that a parallel tempering implementation is straightforward. However, when fitting large 

ABM models running on multiple nodes one problem to solve is the communication between 

several multi-node processes running: communication can either be done via disk or with an 

ad-hoc communication protocol in order to coordinate the chains’ exploration of the 

parameter space. 

Moreover, the necessity to run long chains to compute the posteriori distribution of the 

model’s parameters highlights the importance of having a performing simulation framework 

able to simulate long chains in an acceptable computation time, as well as a speedy 

communication software and hardware infrastructure able to let the chains to quickly update 

their status. To this end the co-design of a new simulation framework able to speed up 

simulations and efficiently scale with the number of nodes is already set up between the pilots 

and the HPC part. 

Another crucial aspect, as detailed in the next section, is the design of an efficient online data 

analysis to evaluate the likelihood of the simulated parameters, i.e. give a score to the 

simulation just run as the MCMC approach requires it at every step to update the chains. 

3.2 High-performance data analytics 
The class of agent-based models offers large freedom to the modeller in implementing various 

dynamics. This benefit makes this approach very valuable to the GSS community and is one 

reason for its popularity. However, this flexibility implies that the overall system behaviour is 

hard to predict a priori. Specifically, for ABM it is often the goal to generate complex and partly 

un-expected behaviour from the interaction of many agents. On a small scale, the modeller 

often can explore this behaviour and derive necessary causal relationships. For high-

performance applications of agent-based models, the project identified an urgent need for 

model analysis for GSS models within the development process. High-performance data 

analytics (HDPA) is an emerging field in scientific computing that provides powerful tools for 

data analysis on large amounts of distributed data. 

Two approaches for model analysis can be envisioned: 

• Online analysis: The model simulation itself aggregates and logs all important data that 

is requested by the modeller to analyse a specific part of the model. This has the 

advantage of using computing resources efficiently, especially in parallel 

implementations. However, new and changing questions that need other aggregations 

or output require changes in the model code or control parameters. After that the 

simulation needs to be re-executed to generate the new data output. This approach 

works well for mature models and rarely changing analysis questions. 
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• Offline (post processing) analysis: For this approach, all important data is stored during 

the model run for later analysis, which is done by an analysis tool. Firstly, this allows using 

well established software solutions, for example of the field of Big-Data analysis tools 

(e.g., Spark). Secondly, the same model output can be analysed regarding several and 

changing questions (which may not all be known at the time of the model execution) 

without altering or re-executing the model. However, by offering more flexibility, this 

approach also poses higher requirements in terms of data storage. This approach is 

beneficial for often changing analysis questions that can be applied to all previously 

generated model output. 

In the following, we sketch the requirements for an offline analysis solution framework that 

would optimally work together with the HPC-model application. We will focus on three 

challenges: software solutions, hardware solutions, and user interface, which all three are 

important to establish a useful scientific tool for the community of GSS-modellers. 

3.2.1 Software 
Common Big-Data applications, like Spark and Hadoop and distributed data processing 

libraries, like Dask, are potential candidates for post processing data analysis. Such analysis 

comprises common statistical analysis tools (mean, variance, conditional mean, entropy...), 

any kind of filter techniques, learning techniques like clustering, pattern recognition and 

principal component analysis, and optimisation methods. Spark offers a separate graph 

analysis toolbox with may be useful for analysing social graphs. Thus, Spark was chosen for 

some initial tests which have been performed using output data from the Green Growth pilot’s 

Mobility Transition Model (MoTMo, see D4.5). In these tests, existing post-processing queries 

were implemented as Spark queries in a testing environment. 

3.2.2 Hardware 
At the two HPC-centres in CoeGSS, Spark software is installed on a specific hardware 

architecture, which means a different computing hardware. Thus, an offline-HDPA approach 

using Spark would require the new hardware to have access to the model output. This means 

there is a need for either copying the data to a second storage, or for a shared storage system. 

The established HPC approach of an InfiniBand Lustre system (highly efficient storage for 

parallel access of MPI-applications) is the most promising candidate, which is however only 

optimised for MPI, not for HPDA. However, copying data between different storage hardware 

would probably neglect most of the many performance increases that is provided by Big-Data 

analysis. Thus, the Lustre file system should be accessible by both the HDPA and the HPC 

system. 

To estimate the storage requirements, we use the current output of the Green Growth pilot. 

Currently one model run of MoTMo generates 320 GB of data. Of course, the amount of 

output data depends on which subset of data from a model run is stored. Currently all the 

properties of each agent are stored at each time step, which can be reduced at later stages. 
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Thus, we assume a reduction to 32 GB of relevant output might be a reasonable estimate for 

the size of the output data. Assuming an ensemble of model runs that consists of 1000 

realisations would require 32 TB of storage space, which is commonly provided by Lustre file 

systems. Assuming several users are working in parallel would easily multiply required 

storage. Since all data is analysed, the same fast access is required by the HDPA hardware as 

by the HPC hardware, which might pose a challenge to the design of future computing clusters. 

An alternative approach would be to run the model analysis software on the HPC 

infrastructure itself (see Figure 3.3). Dask is a python module that supports distributed arrays. 

Thus, in principle it can handle Big-Data analysis, but this has not yet been tested in CoeGSS. 

To provide the best alternative for GSS model analysis, it needs to be tested which of the two 

solutions portrayed in Figure 3.3 makes more sense and which software (Spark, Hadoop, Dask 

or others) offers the best solutions in the chosen case. HPC and HPDA competency is required 

for this judgment; in CoeGSS, the pilot modelling group is looking into details as concerns 

common GSS analysis task structures (e.g., standard statistical analyses of agent properties 

over a set agents, over different time-steps in each simulation and over many realisations). 

 

Figure 3.3 – Left side: Model run and post-analysis is performed on separated hardware. 
This requires mutual access to the data storage hardware (HPC and HPDA). Right side: HCP 

hardware is used to perform model runs and post-analysis. 

3.2.3 User interface 
In the beginning, expert users will have to write script-based analysis and submit these on the 

HDPA computing nodes. Later, a user interface and analysis templates shall help the users to 

carry out such analysis. The HPC queuing systems allows for the efficient allocation of 

resources, but does not allow for easy interaction, since interaction reduces efficiency of 

resource use. For model analysis, we envision an easily accessible user interface. The software 

package Zeppelin makes the Spark framework accessible by browser, which would fit nicely 

into the CoeGSS portal that is developed by WP5. The advantage of the Zeppelin notebook is 

that it provides a scripting environment in the browser where one can do the analytics in Scala 
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or Python. A big advantage would be to get built-in front-end support that is able to do very 

nice plots and can make use of all sorts of graphical visualisation tools (Javascript, Python). 

However, you do not get the full development support that a modern IDE provides. 

3.3 Adaptive parameter space exploration 
We first justify the interest of adaptive parameter space exploration, before outlining more 

specific requirements and proposing an existing tool. 

3.3.1 Motivation 
There are many reasons why adaptive parameter space exploration can prove precious, going 

from meeting specific Global System Science (GSS) needs to highlighting High Performance 

Computing (HPC) strengths, while clearly outperforming plain parameter sweeps allowed by 

the Cloud. Such adaptive parameter space explorations also highlight synergies between GSS 

and HPC. We detail these motivations in the following paragraphs. 

3.3.1.1 Why parameter space exploration is important in Global 
System Science modelling 

Exploring the behaviour of a model over the parameter space is essential in Global Systems 

Science, firstly when designing and validating the model and secondly when running it once 

validated. 

Firstly, the complexity of the reality to simulate requests a certain level of model complexity 

involving many parameters while still remaining simpler than the reality. Tailoring as precisely 

as possible the model to a specific modelling need, therefore often requires a few cycles of 

model refinement and validation. Key phases of such a cycle, including calibration and 

validation, require to explore the model behaviour as thoroughly as possible over the 

parameter space – and not just to run a limited set of simulations giving an incomplete view 

of the model behaviour. 

Secondly, once validated, GSS models can be used for decision support, their parameters 

corresponding to possible political leverage (level of information, incentives, ...), and their 

observables corresponding to the value of key performance indicators (citizen happiness, 

number of smokers, pollution, real estate prices, revenue, ...). 

Therefore, they might require: firstly, to predict possible outcomes, to simulate many possible 

scenarios, possibly over continuous parameter values, while observing non-trivially evolving 

key performance indicators. Secondly, to prescribe desirable outcomes, they might require 

further simulations to find out for instance how to optimise some key performance indicators, 

or to evaluate tipping points or areas (e.g. predominance of green cars following the level of 

some incentive), or else to assess risk or benefit zones (for instance high or low levels of 

smokers). 
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3.3.1.2 Why prefer adaptive parameter space exploration to 
systematic parameter sweep? 

Adaptive parameter space exploration allows to optimise the choice of simulations following 

the purpose of the study. Its benefit is multi-fold. 

• Avoid and limit unnecessary simulations and thereby optimise computation time use. 

• Increase accuracy of the results finally obtained, with a similar (or lower) number of 

simulations. 

• Detect and describe automatically areas of interest, without requesting a priori 

assumptions, leading to possibly new discoveries. 

Let us imagine for instance a simple case where we seek to find the maximum value of an 

indicator in a two dimensional parameter space (e.g. revenue, number of green drivers, 

number of non-smokers). 

Let us suppose for instance that our real surface looks like the one displayed in Figure 3.4. 

 

Figure 3.4 – Simple example: real surface to explore in the parameter space 

The peak is very narrow. Therefore, its highest value, or even its presence might escape too 

coarse grid explorations, or explorations based only on the value of the indicator and not on 

gradient calculation. 

If our purpose is to find peaks corresponding to quick changes in value of a specific indicator, 

an adaptive parameter space exploration might start by calculating simulation results over a 

regular grid and then refine it iteratively, specifically in area(s) of interest identified over its 

gradient evaluation in every point. 
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In Figure 3.5, we show for which points of the parameter space simulations would be run, over 

a few iterations. Starting with a wide, coarsely spaced regular grid, we can see how, after every 

iteration, the region of interest narrows, and spacing is reduced. The simulation points 

therefore quickly concentrate in the region of interest. 

 

Figure 3.5 – Simple example: simulated points in the parameter space 

This leads to a very quick increase in the accuracy of the computed maximum peak value. In 

Figure 3.6 we show for every iteration the ratio between the maximum found and the real 

maximum (1 corresponds to finding the real value). 

 

Figure 3.6 – Simple example: accuracy 

Let us now compare these results to a purely parallel systematic parameter sweep. 
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Firstly, we compare the accuracy achieved over the same number of simulations (Fig. 3.7). The 

accuracy increases much quicker with an adaptive parameter space exploration algorithm. 

 

Figure 3.7 – Simple example: comparing the accuracy reached by the algorithmic approach 
vs a systematic approach, for a given number of simulations (1 corresponds to finding the 

real value) 

Secondly, we compare, for the two approaches, the number of simulations necessary to reach 

a given level of accuracy. In Figure 3.8, we calculate, for a given accuracy, the ratio between 

the number of simulations required by the algorithmic approach and those needed by a 

systematic parameter sweep. We can see it decreases sharply and tends quickly towards 0. 
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Figure 3.8 – Simple example: ratio of the number of simulations required by the 
algorithmic vs the systematic approach, to achieve a given level of accuracy 

3.3.1.3 HPC / HPDA is valuable for such parameter space exploration 
Such an algorithm benefits from HPC resources 
Adaptive parameter space exploration is based on an nth order gradient calculation over one 

or a few indicators, requiring distributed calculations, for which HPC systems are optimised. 

How this relates to existing HPC calculations 
Adaptive parameter space exploration can be compared for instance to adaptive physical 

space exploration in fluid dynamics to simulate more precisely turbulent zones or adaptive 

mesh refinement for visualisation. 

It puts into light HPC forces, particularly for higher level computation challenges 
The challenge of such parameter space exploration is greater than just parallelizing one 

simulation. 

• Every computation unit needs to optimise the calculation of not one or a few agents, but 

of a whole simulation. 

• Gradient calculation might concern not just one but a few parameters and indicators, 

leading to multi-dimensional gradient calculation, possibly requiring further analytics to 

aggregate results over the different indicators. 

• Concerning the number of computation units, parameter space exploration needs can be 

higher than just one parallelised simulation. Indeed, whereas human population is 

limited now to a little more than 7.4 billion, the basic number of simulations to start 

exploring a p-dimensional parameter space with 𝑛  values in every dimension is 𝑛𝑝. 10 

billion would correspond for instance to testing 10 values in every dimension of a 10 

parameter space, which can be increased easily. 
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• Increasing the number of nodes should allow to scale up easily, adding only localised 

inter-node communications. In contrast, when parallelizing a single GSS simulation and 

dispatching agents over nodes, increasing the number of agents in a highly 

interconnected population can require to increase quadratically the number of inter-

node communications. 

3.3.1.4 Adaptive parameter space exploration highlights GSS-HPC 
synergies in CoeGSS 

Here are a few possible benefits 

• Bridging a specific GSS need (parameter space exploration) with specific HPC strengths 

(enhanced inter-node communications optimizing gradient calculations essential to 

adaptive parameter space exploration). 

• HPC resources, by enhancing this kind of adaptive space exploration, open to more 

efficient and thorough space exploration in a given time while not limiting such 

explorations to explicitly defined areas of interest, hopefully allowing therefore for new 

GSS discoveries. 

• These specific GSS needs, by proposing new challenges for HPC, concerning both the 

work load per calculation unit, the number of necessary units and their required 

communications, hopefully will allow to put further into light HPC strengths. 

3.3.2 More detail on needs and requirements 
The GSS scope being very wide, it is difficult to provide requirements defining limited needs, 

as for instance fluid dynamics limited to a 3 (or 4 including time) dimensional space. 

3.3.2.1 Parameter space characterisation 
There is no limitation on the kind of parameter space to be explored. Parameters of interest 

may concern any part of the model, thematically, but also at different scales, for instance 

• Global ones, corresponding to one value, such as shared level of overall information, 

global incentives, ... 

• Individual ones corresponding to possible distributions, themselves characterised by a 

few parameters defining for instance a random distribution (average, standard deviation, 

...), such as a level of ecological awareness or income. 

In any case there is no limit on their number or kind. 

Therefore, tools are required to allow for space exploration with as many dimensions as 

possible (and multi-dimensional gradient calculation). 
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3.3.2.2 Indicator(s) characterisation 
Here again many indicators can be simultaneously of interest, either as direct output of 

simulations, or calculated therefrom. Further they might be of different kinds (discrete, 

continuous ...) 

Therefore, tools are required to allow calculating (multi-dimensional) gradients over a few 

indicators, while providing analytical tools. 

3.3.2.3 Exploration target(s) 
There can be various purposes for such a parameter space exploration, targeting different 

kinds of areas of interest and requiring various kinds of gradient or other analytics calculations. 

Tools should allow to answer such needs. 

Exploration purpose 
Purposes of such an exploration include 

• Calibration 

• Validation 

• Finding an optimum 

• Finding the conditions of a change in behaviours (e.g., predominating behaviour, level of 

pollution) 

• Defining areas of risk or benefit (resiliency) 

Areas of interest 
Areas of interest which tools should allow to target are 

• Points: finding an optimum (ex. happiness, green spirit, income) 

• Lines: defining tipping lines from one kind of outcome to another (green behaviour or 

non-smoking prevailing) 

• Surfaces: risk or benefit areas: too high pollution, resiliency, 

Which kind of gradient calculation? 
Necessary calculations concern 

• Simple value 

• First order gradient to detect quick changes in value 

• Second order gradient to detect optima 

Other analytics? 
These calculations are likely to require the further calculation of analytics, for instance to 

aggregate information over various observables into a single indicator. Any tool should also 

allow for such intermediate calculations. 
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3.3.3 Existing solutions 

3.3.3.1 Algorithms and approaches 
See corresponding section in D4.5. 

3.3.3.2 HPC-oriented software 
Dakota (https://dakota.sandia.gov/), A Multilevel Parallel Object-Oriented Framework for 

Design Optimisation, Parameter Estimation, Uncertainty Quantification, and Sensitivity 

Analysis provides such facilities while being developed for running on HPC. 
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4 Next steps 
This document provides the last iteration of the deliverable that reports on pilot requirements 

to the Centre of Excellence for Global Systems Science. Complementing D4.1 and D4.2, it has 

focused on the simulation part in the work on a GSS-SIS, by specifying requirements for easy 

access to the computing resources and for different simulation analysis techniques. 

However, the deliverable is neither exhaustive nor does it represent the final word on GSS 

requirements to HPC within the project, where the requirements presented here will be 

further discussed and refined within some of the working groups as needed. Requirements 

stated in the previous iterations remain valid, without having been repeated here, for 

example, those on data collection and pre-processing, on an ABM framework and on 

visualisation. 

Further work on using the techniques presented in Section 3 shall be carried out by the three 

pilots, with a special focus of the Health Habits pilot on Markov Chain Monte Carlo 

applications, of the Green Growth pilot on high performance data analytics tools, and of the 

Global Urbanisation pilot on adaptive parameter space exploration. 
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Appendix A 

Green Growth pilot workflow description (from the project internal wiki) 

This workflow was used for the global model implemented for the Green Growth pilot, details 

on the model can be found in D4.4 and D4.5. 

 


