

D3.6 – DOCUMENTATION AND

SOFTWARE ON NEW METHODS,
TOOLS AND MECHANISMS FOR

RELEASE 3 OF THE PORTAL

Grant Agreement 676547

Project Acronym CoeGSS

Project Title Centre of Excellence for Global Systems Science

Topic EINFRA-5-2015

Project website http://www.coegss-project.eu

Start Date of project October 1, 2015

Duration 36 months

Deliverable due date 31.01.2018

Actual date of submission 31.01.2018

Dissemination level Public

Nature Report

Version 1.0

Work Package WP3

Lead beneficiary HLRS

Responsible scientist/administrator Marcin Lawenda

Contributor(s)

Marcin Lawenda, Francisco Javier Nieto De Santos,
Burak Karaboga, Ingo Brauckhoff, Michał Pałka, Johan
Lodin, Fabio Saracco, Andrea Rivetti, Wolfgang Schotte,
Piotr Dzierżak, Steffen Fuerst, Sergiy Gogolenko

 D3.6 Documentation and Software on Release 3 of the Portal

1

Internal reviewers

Sarah Wolf

Tiziano Squartini

Keywords portal, global system sciences, HPC, centre of
excellence, CoeGSS, data management, synthetic
population, synthetic network, data analysis, ABMS,
CKAN, Moodle, AskBot, LDAP

Total number of pages: 47

 D3.6 Documentation and Software on Release 3 of the Portal

2

Copyright (c) 2016 Members of the CoeGSS Project.

The CoeGSS (“Centre of Excellence for Global Systems Science”) project is

funded by the European Union. For more information on the project please

see the website http:// http://coegss-project.eu/

The information contained in this document represents the views of the CoeGSS as of the date

they are published. The CoeGSS does not guarantee that any information contained herein is

error-free, or up to date.

THE CoeGSS MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY PUBLISHING

THIS DOCUMENT.

Version History

 Name Partner Date

From
Marcin Lawenda

PSNC December 5th,

2017

Contribution

from

Francisco Javier Nieto De Santos, Burak

Karaboga, Ingo Brauckhoff, Michał

Pałka, Johan Lodin, Fabio Saracco,

Andrea Rivetti, Wolfgang Schotte, Piotr

Dzierżak, Steffen Fuerst, Sergiy

Gogolenko

ATOS,

Chalmers,

IMT, ISI,

HLRS, PSNC,

GCF

January 19th,

2018

Version 0.65
for internal review PSNC January 23rd,

2018

Reviewed by
Sarah Wolf

Tiziano Squartini

GCF

IMT

January 29th,

2018

Version 1.0 for

submission

Marcin Lawenda PSNC January 30th,

2018

Approved by
Coordinator UP January 31st,

2018

 D3.6 Documentation and Software on Release 3 of the Portal

3

Abstract
This document is foreseen as a continuation of the previous deliverable D3.5 where

achievements were addressed in implementing services specified in the deliverable D3.2 as

far as they are realized to be integrated in release 2 of the portal, planned at month 20, the

overall Centre's workflow.

This document is the continuation of deliverable D3.5 which reported achievements in the

implementation of services specified in deliverable D3.2 and their integration in release 2 of

the portal planned at month 20 of the centre’s workflow.

In this deliverable, we are presenting the progress in the development of tools which are

intended to be integrated in release 3 of the CoeGSS portal as well as mechanisms that will

bind portal and HPC functionality.

It should be mentioned that work on the implementation is still in progress, so some solutions

are presented in their current state. In these cases, further investigation and development is

expected.

 D3.6 Documentation and Software on Release 3 of the Portal

4

Table of Contents
Abstract .. 3

Glossary .. 5

1 Introduction ... 7

2 Current state of the Portal .. 8

3 Documentation of operating components ... 10

4 Software integration ... 14

5 Software outlook ... 34

6 Summary ... 42

References .. 43

List of tables ... 45

List of figures .. 46

 D3.6 Documentation and Software on Release 3 of the Portal

5

Glossary
3D Three-dimensional space.

ABM Agent-Based Model

ABMS Agent-Based Modeling and Simulation

Apache Spark an open-source cluster-computing framework

API Application Programming Interface

AskBot a popular open source Q&A Internet forum

CAVE

Cave Automatic Virtual Environment (an immersive virtual reality
environment)

CKAN Comprehensive Knowledge Archive Network

CoE Centre of Excellence

CoeGSS Centre of Excellence for Global Systems Science

COVISE Collaborative Visualization and Simulation Environment

CPU Central Processing Unit

CRB COVISE Request Broker

CSS Cascading Style Sheets

CSV Comma-Separated Values file format

Cuda a parallel computing platform and API model created by Nvidia

D Deliverable

DCAT Data Catalog Vocabulary

DDR (DDR SDRAM) Double Data Rate Synchronous Dynamic Random-Access Memory

Django a free and open-source web framework, written in Python

DSL Domain-Specific Language

EC European Commission

Eclipse CDT Eclipse C/C++ Development Tooling

GB Gigabyte

GB/s Gigabytes per second

GDDR Graphics DDR SDRAM

GHz Gigahertz

GIS Geographic Information System

GitHub a web-based VCSs repository and Internet hosting service

GPU Graphics Processing Unit

GSS Global Systems Science

HDF5 Hierarchical Data Format, version 5

HPC High Performance Computing

 D3.6 Documentation and Software on Release 3 of the Portal

6

HTTP Hypertext Transfer Protocol

I/O Input/Output

IDE Integrated Development Environment

IP Internet Protocol

IPF (IPFP) Iterative Proportional Fitting Procedure

LDAP Lightweight Directory Access Protocol

M month

Moodle a free and open-source software learning management system

OpenCOVER
Open COVISE Virtual Environment (an integral part of the COVISE
visualization and simulation environment)

PBS Portable Batch System (computer software that performs job scheduling)

PDF Portable Document Format

PostgresSQL
(Postgres)

an object-relational database with an emphasis on extensibility and
standards compliance

Q&A software (FAQ
Service) a Web service that attempts to answer questions asked by users

RAID

Redundant Array of Independent Disks (a data storage virtualization
technology)

RAM Random-Access Memory

RDF
Resource Description Framework (a family of W3C specifications
designed as a metadata model)

SCM Software Configuration Management

SI Synthetic Information

SLURM (Slurm)
Simple Linux Utility for Resource Management (workload manager, job
scheduler)

SM Streaming Multiprocessor

SQL Structured Query Language

SSH Secure Shell (a cryptographic network protocol)

SSO Single Sign-On

TCP Transmission Control Protocol

TB Terabyte

VCS Version Control System

VNC Virtual Network Computing

VR Virtual Reality

W3C World Wide Web Consortium

WP Work Package

XLS Excel Binary File Format

 D3.6 Documentation and Software on Release 3 of the Portal

7

1 Introduction
With this deliverable we are providing the knowledge and arrangements we gained and

developed since the previous document, D3.5, which should be taken as complementary when

reading of this deliverable.

Previously we focused on the description of tools strictly designed to provide functionality in

the portal like Moodle and AskBot as well as interfacing capabilities which by their nature lie

beneath these services, like data management operated by the CKAN server.

In the meanwhile, we carried out many analyses and tests to advance service functionality and

interface them with the portal (chapter 2).

As was stated in the previous document, the portal has a single entry where CoeGSS

stakeholders may run provided services. This assumption has a significant impact on design

and implementation of the services.

The overall goal of the services developed by WP3 is to use the potential and possibilities of

HPC and HPDA infrastructure. That is why these applications must be run directly on machines

where a multithreading approach and high throughput processing are feasible.

Portal functionality must guarantee handling HPC applications directly from its level. In order

to couple these two environments (portal and HPC), special solutions described in chapter 3

are envisaged.

In the portal, two types of interactions can be distinguished: batch and interactive. The batch

job definition and submission are sufficient for most of the applications like Synthetic

Populations (chapter 4.1) and Network Reconstruction (chapter 4.2). A special approach is

proposed for visualisation where interactive access is required, a dedicated solution based on

the COVISE software is presented in chapter 4.3. Data manipulation solutions leading to a

common data format are explained in chapter 4.4.

In chapter 5.1 we discuss the progress in adaptation and development of ABMS tools like

Pandora and AMOS. We are concluding our considerations with chapter 5.2 where data

analytics approaches are presented for undemanding and demanding data exploration.

 D3.6 Documentation and Software on Release 3 of the Portal

8

2 Current state of the Portal
In order to avoid duplication, the status of the CoeGSS portal will be briefly highlighted by

summarizing the information already available in deliverables D5.1 [10], D5.2 [11], D5.9 [12],

D5.10 [13] and D5.11 [20].

The second release of the CoeGSS portal has been deployed in month M20 of the project’s

timeline adding several new features, enhancements to the existing components, visual

improvements and a new authentication and authorization mechanism on top of what has

been described in D3.5.

The new components of the CoeGSS portal, as well as the components that have been

improved with new features and enhancements, are as follows:

 Frontend

The new portal release introduced a single sign-on (SSO) mechanism provided by a

Shibboleth 2.0 deployment that relies on the existing LDAP deployment for

authentication [20]. The Frontend also features two new sub-components called

Yellow Pages and Matchmaking Tool.

o The Yellow Pages provides a catalogue of organizations that have a relationship

with CoeGSS, which can be browsed and searched by any user of the portal.

The catalogue will be extended with experts and organization employees in the

next iteration of the CoeGSS portal [20].

o The Matchmaking Tool offers several web pages where the user is provided the

best possible set of contacts for the required information. The matchmaking is

done by processing the user needs taken as input and the existing data in the

Yellow Pages.

 Data management

The second portal release introduced two new third party CKAN extensions, ckanext-

extractor and ckanext-oaimph. Also, two new custom CKAN extensions, Dataset

Relationship Manager and Data Movement have been implemented:

o Dataset Relationship Manager enables the user to create and edit the relations

between existing datasets.

o Data Movement allows the user to import data from outside sources (e.g.

MIDAS database) to the CKAN server [20].

 Training & User support

The current version of the CoeGSS portal introduces a new look and feel for both of

the components to match the visual style of CoeGSS [20].

 Infrastructure management

With the addition of the SSO mechanism, two new virtual machines had to be added

to the existing infrastructure.

For the next releases of the CoeGSS portal, the main goal is to provide fully functional HPC-aaS

features allowing the user to interact with the HPC providers for job submissions and job

 D3.6 Documentation and Software on Release 3 of the Portal

9

management. Following this high priority goal for the future of the CoeGSS project, the tasks

below were identified:

 Definition and creation of user roles and hierarchy

 Integration of this user hierarchy with other CoeGSS components (CKAN, Moodle,

LDAP etc.)

 Content creation for the Community and Training components

 Functional enhancements of the existing components

 Visual improvements of the existing components

 D3.6 Documentation and Software on Release 3 of the Portal

10

3 Documentation of operating components
This section documents solutions on interoperation of portal and HPC capabilities. We also

discuss unification of the access as well as user support features.

3.1 Portal – HPC interoperability
One of the main purposes of CoeGSS is to support the usage of HPC technologies and,

therefore, it is necessary that the access to HPC resources and information will be easy. Such

interaction is centralized through the Portal with a component which deals with the job

submission functionality and with monitoring mechanisms that can also be used for

accounting purposes.

The job submission requires some specification of the kind of resources and other

particularities of the software to be run. Moreover, when doing simulations, these follow a

workflow already defined in CoeGSS, which requires using several tools in order to execute a

complete simulation (data pre-processing, synthetic population generation, agent’s

simulation, big data analysis, etc…). Such workflows need somehow to be described, so the

job submission system will be aware of the dependencies between tasks and of the required

data movements.

The component in the Portal is based on Cloudify1 and it uses TOSCA2 as input for defining the

workflows. Therefore, each complete simulation should provide a TOSCA file describing the

tasks to be executed. In fact, we plan to have examples of TOSCA tasks for each of the tools

developed in CoeGSS (i.e. synthetic population creation tool, network reconstruction tool,

etc.), so it will be easier to ‘compose’ the workflows with chunks representing each step.

The jobs submission component is able to submit jobs to SLURM, and there is an ongoing

implementation in order to support PBS/Torque. It is able to start, stop and destroy jobs and

it can also retrieve some monitoring information, such as the status of a job, the status of the

queue and status of the HPC resources. Such information can be used for performing a better

selection of the HPC centre in which end users want to deploy their jobs.

It would be possible to perform applications monitoring while they are running, but that would

require an instrumentation of the applications or an agreement on the way to generate logs,

both assuming a performance loss, but enabling interactive simulations.

Finally, accounting is possible by enabling an interaction between the accounting systems of

the different HPC centres involved in the project (HLRS and PSNC). Such interaction is not yet

defined and it will not be available for the moment.

1 Cloudify http://cloudify.co/
2 Topology and Orchestration Specification for Cloud Applications http://docs.oasis-
open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html

http://cloudify.co/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html

 D3.6 Documentation and Software on Release 3 of the Portal

11

3.2 Access unification

3.2.1 Purpose, Design and Implementation
The initial portal design points out one of the main responsibilities of the Frontend component

as providing a single point of access for all other components that are implemented in the

context of CoeGSS. In the first Portal release, although the users’ authentication information

was centralized in LDAP, the login process had to be repeated for each individual service [20]

which was not in-line with the design.

To achieve the design goal, a separate component, Shibboleth was selected with the purpose

of providing the CoeGSS users a single sign-on mechanism, eliminating both the complexity of

handling user sessions at the backend and the hassle of repeating the login process for each

individual CoeGSS service for the user.

The component is composed of two sub-components, the Identity Provider (IdP) and the

Service Provider (SP). IdP is deployed on its own virtual machine and each service provider

resides on the same machine as the component that is integrated to the SSO mechanism (e.g.

CKAN, Moodle, Askbot, and Frontend).

3.2.2 Use Cases
The SSO component works completely in the background except for taking control of the GUI

for the login process, which is the only interaction with the user.

Once the user tries to access a restricted resource such as the user profile on the frontend or

dataset creation on CKAN, he/she gets directed to the SP. At this point, the SP prepares an

authentication request and sends it to the IdP. Here, IdP checks if the user has an existing

session and if not, authenticates the user against LDAP by prompting for their username and

password. Once the authentication is completed, the authentication response is sent to SP.

After the validation of the response, SP creates a session for the user and sends him/her to

the resource.

3.3 User support features of the portal
The design of the portal includes features for interacting and providing information about the

services for both registered users and unregistered visitors of the website.

Interaction with registered users includes the implementation of a customer support system

structured as a question and answer forum.

Requirements of the system include:

- a tagging system to provide flexible categorization

- a voting system to mark the most useful information

- easy filtering of all new issues submitted

- easy filtering of all issues closed with an answer

 D3.6 Documentation and Software on Release 3 of the Portal

12

- easy filtering of all issues still open without an answer

The free software product AskBot is the tool chosen to implement such a system.

The AskBot system interfaces to the CoeGSS portal through LDAP allowing users with a valid

portal login to authenticate on AskBot in order to raise questions and interact with the CoeGSS

support staff.

The AskBot system has been configured with the following categories and sub-categories:

• Consultancy

o Data-interpretation-visualisation-analytics

o Model-building

o Parallelisation

o Simulation

• Matchmaking

• Portal

• Repository

• Training

o How-to-get-support

• Yellow-Pages

The Categories are used to tag the requests for assistance so that each question can be

efficiently redirected to the appropriate person in the second-level support staff.

The Categories will be reviewed and updated when new services are added to the portal.

The AskBot system is reachable from the main menu of the CoeGSS portal and its look and

feel has been customized to match the general style of the CoeGSS website and portal. These

customizations are packaged in a single CSS file that can be easily applied to new installations

and that is carried forward between AskBot software updates.

The current implementation of the system is reachable at http://support.coegss.hlrs.de/

Use Cases

The system provides information about problems encountered by the users of the services

provided through the CoeGSS portal.

It is open to non-authenticated visitors to browse previous questions raised by the users and

it requires authentication to raise new questions. Users authenticate with AskBot using the

same credentials used to access the portal.

Non-authenticated users

For non-authenticated visitors, the existing questions (either answered or being discussed)

can be browsed freely in order to find the solution or to follow the conversation which will

eventually lead to the resolution of the issue.

 D3.6 Documentation and Software on Release 3 of the Portal

13

Portal Users

For Portal Users, the same credential valid for the CoeGSS Portal can be used to access the

AskBot system in order to raise a support request.

The system presents an input box marked as “search or ask your question” where the user

starts entering the subject of his/her request, existing questions matching the keywords

entered will appear along with the option of creating a new question.

The user can optionally tag the question giving an indication of the services impacted by the

problem. Support staff will add/remove tags according to the areas where the issue needs to

be investigated.

The user will come back to the portal to check the progress of his/her request and once

support staff provides an answer, the user will be able to mark the solution provided as valid

or to submit more information if the solution provided does not solve the problem.

Support Staff

Support staff will identify a new question and escalate the question as needed to receive

information from the technical staff working on the impacted services.

Support staff acts as a “first line” support and logs into the AskBot system with “support staff”

permissions.

AskBot provides a quick way to show the questions for which an answer has not been defined

by selecting the “Unanswered” filter in the top menu.

Support staff provides follow-up information and makes sure the user tests the answer

provided and marks the answer as correct or describes why the answer does not solve the

problem in order to reach a satisfactory solution.

Support staff can also escalate the issue to technical points of contact for the service the

problem is related to.

Each person acting as a technical point of contact acts as a “second line” support and has the

specific expertise to troubleshoot one of the specific services provided by the portal. Their

task is to provide information to the first-line support staff or take directly the responsibility

to deal with the user through the AskBot system until a solution is reached.

 D3.6 Documentation and Software on Release 3 of the Portal

14

4 Software integration
This section describes trial interfaces to the software components which must be integrated

into release 3 of the portal like: Synthetic Populations, Network Reconstruction and

visualization based on the COVISE application. This software was identified as an essential part

of the general CoeGSS workflow in D3.2.

4.1 SynPop tool Web GUI
Synthetic populations are generated based on marginal distributions of population data and

micro sample data. The generation procedure attempts to match the marginal distributions

given as input by sampling from the micro sample data. The job specification consists of four

parts:

• the vintage parameter,

• input data,

• output data,

• job description.

The vintage parameter is either a past timestamp or the label ‘latest’, which is equivalent to

the current timestamp. The vintage parameter allows selecting older versions of the input

files.

The input data identifies the datasets that are to be used by the generation procedure, which

are the marginal distribution data and micro sample data for individuals and households. The

datasets are described by CKAN resource IDs, and have to be represented as CSV files (in the

future, HDF5 files will also be supported). For every input file, the version with the latest

timestamp that is not more recent than the vintage date is selected.

The output data identifies the path to the CKAN dataset where the resources containing the

result data will be created, the names of the resources, and the names of the data columns.

The output data is written as a CSV file.

The job description is a JSON-formatted file that specifies which columns in the input dataset

refer to geographical identifiers, categories (such as different combinations of income and age

categories), and counts. The geographical identifiers and categories must be represented

consistently in all datasets. Additionally, in case the microsample might contain attributes that

are more detailed than categories in the marginal data, the mappings between attribute

values and categories also need to be specified. These may be either mappings between

categorical variables, or between a categorical variable and a range of an ordinal variable. The

synthetic population generation procedure will use Iterative Proportional Fitting (IPF) in order

to produce a contingency table matching the marginal distributions, and then use this table

to sample households and individuals that comprise the synthetic population.

Currently, the execution of the job is not preceded by a separate stage where an execution

plan is created. Instead, all errors are reported as they are encountered during the execution.

 D3.6 Documentation and Software on Release 3 of the Portal

15

Synthetic populations produced by this step may be extended by networks generated by the

network reconstruction tool, explained in the next subsection.

4.2 Network reconstruction tool Web GUI
A crucial ingredient in ABMs is represented by the modelling of interactions. For most of the

social simulations, the main idea is that friendship relations influence the behaviour of single

agents. Data about actual friendship (i.e. not based on social network platforms) are hard to

collect: most of them are inferred by other measurements, like, for instance, mobile calls [14],

[15]. In providing a network for the interactions among agents, we assume that similar agents

influence each other, thus using the similarity among agents as a proxy for friendship.

The agents of CoeGSS pilots come from the generation of a synthetic population: as described

in the previous paragraph, agents are defined by different attributes, whose global

distributions satisfy the observed ones. The attributes can be of different types: integers,

floats or categorical data. The similarity network needs to handle data of different kind and

return a similarity value for each attribute, weighing them appropriately.

The problem lies in defining what is the similarity: in the literature, different proposals can be

found, mostly basing their definition on the target of their analysis and thus lacking

generalisation; moreover, most of the studies focus on just one data type (say, categorical

data, continuous data, discrete data…), disregarding the possibility of heterogeneous

datasets. In the network reconstruction tool, the definition of Lin [16] is considered and

modified in order to overcome some drawbacks.

Indeed, Lin similarity has several positive features: it is general and unbiased, being based on

Information Theory, and permits to analyse different data types. On the other hand, it

implicitly considers all agent attributes as independent, an assumption that is rarely satisfied

for real data.

In order to overcome possible correlations between attributes, in the present tool the Lin

similarity per attribute is calculated, considering the data type, and then weighted using the

Principal Component Analysis (PCA, [18]) results. In the PCA, the weights for the different

attributes are calculated by considering the different contribution of the attributes to the

scattering of the data. This contribution can be inferred from the components of the principal

eigenvector of the covariance matrix.

As mentioned in [15], friendship relations are geographical distance dependent. In the tool,

both exponential or 1/distance damping are examined. In the near future, other power law

dampings are going to be considered. In the analysis so far, the produced networks show a

strong hierarchical structure organised in dense clusters, as expected in social networks.

Essentially, the algorithm for the similarity network tool is divided in 3 steps: 1) the calculation

of the weights of the similarities per attribute via the PCA; 2) the calculation of the similarity

 D3.6 Documentation and Software on Release 3 of the Portal

16

for every pair of agents per attribute; 3) the calculation of the global value of similarity. In the

last step, the different contributions of the similarity per attribute are weighted by the PCA.

In the current realisation, the input data is a .CSV file, as the one realised by MIDAS SPEW [19].

In the following months, the input file format will change to the HDF5 format as provided in

the CoeGSS CKAN.

The user may decide to disregard some of the attributes of the synthetic population tool,

considering the information they carry as unnecessary for the simulation. Since the approach

is quite general, this selection is going to be part of the pre-processing of the network

reconstruction tool: once data is suitably selected, the algorithm will be fed by the resulting

dataset.

The code is implemented in Python, making use of mpi4py and h5py packages, i.e. Python

wrappers respectively for MPI (Message Passing Interface) and the (parallelised) management

of HDF5 files. The algorithm has just two parameters: the length scale at which the damping

factor is equal to ½ and a categorical entry controlling the damping function (exponential or

1/distance, at the moment). In the next version, different power law exponents will be

examined.

The output of the similarity network algorithm is going to be saved in the original input HDF5

file. A first HDF5 group is going to be created, representing the simulation step, then an HDF5

subgroup representing the processor used and then an HDF5 dataset for each attribute in the

original dataset, representing the associated similarity calculated by the processor. An extra

HDF5 dataset contains the global similarity, i.e. the one obtained from the weighted

contribution of all similarities per attribute. Currently the results are saved in a new HDF5 file

with the structure defined above.

Besides the modification mentioned above, we are examining different and more efficient

ways of partitioning the set of agents for the parallelisation, due to the distance damping.

4.3 Visualisation tools
Within the project, the focus of the Visualisation Task is to develop and to provide remote and

immersive visualisation services to consortium partners as well as to CoeGSS users. These

services will be integrated into the CoeGSS portal regarding the defined workflow as described

in D3.2 as well as the requirements described in D3.5. A main goal of these services is to

provide access to high-performance, highly sophisticated visualisation integrated in a

seamless manner in order to create an “Immersive Analytics Environment” for huge statistical

and multidimensional datasets.

This subsection will describe the current status of development on interfaces to access

datasets with respect to the proposed workflow definition as well as modules to read, process

and visualise given datasets.

 D3.6 Documentation and Software on Release 3 of the Portal

17

4.3.1 COVISE Portal Integration
With focus on visualisation of large datasets, three options to access visualisation are

proposed according to the role of the user, given datasets and access to HPC resources.

I. remote session

After a simulation run on HPC resources, the simulation results usually are available

via the user’s workspace. Typically, the HPC infrastructure provides login, pre- and

post-processing or visualisation nodes respectively with sophisticated visualisation

hardware and high-bandwidth access to the workspaces. Available systems as well

as hardware specifications on Hazel Hen at HLRS for instance are described in D3.5

chapter 4.3.2. These nodes provide dedicated VNC-sessions with OpenGL support

to enable execution of COVISE/OpenCOVER for visualisation of simulation results.

The link to a Virtual Network Computung session (VNC session) can be provided by

the CoeGSS portal correspondent to the workflow progress.

An advantage of this option is, that processing as well as visualisation is running on

the pre- and post-processing nodes within a HPC infrastructure and the user’s local

side just requires a VNC viewer. On the other side, a good network low-latency

bandwidth as well as access to the HPC resources are needed.

II. hybrid session

COVISE/OpenCOVER is capable of running distributed visualisation sessions.

Initially used for collaborative sessions, this feature can also be used to distribute

different processes to multiple machines with specialised hardware

configurations3. For example, a remote system with I/O and storage capabilities,

which is used to read and process the data, and a local system with OpenGL

rendering capabilities, which is used to render the data to the user’s screen, can be

interconnected within COVISE.

An advantage of this solution is, that storage and processing capabilities for these

potentially huge datasets for visualisation are still provided by HPC resources,

while visualisation can be run locally on a graphics workstation or a pc cluster when

using a powerwall for example. This option enables high quality rendering

dependent on the local rendering capabilities but still needs a good bandwidth.

III. local session

COVISE/OpenCOVER is available for Microsoft WindowsTM, Linux and Mac OS X.

The install files can be downloaded via the HLRS website4, the source code is

available via github5 and needs to be compiled for the local system. The advantages

of this solution are that the visualisation session can run on a local machine stand-

alone without the need of internet access nor access privileges to any HPC

3 https://www.hlrs.de/solutions-services/service-portfolio/visualization/covise/features/
4 https://www.hlrs.de/solutions-services/service-portfolio/visualization/covise/support/
5 https://github.com/hlrs-vis/covise

 D3.6 Documentation and Software on Release 3 of the Portal

18

resources. This is a typical configuration used by CAVE setups or similar

installations. Necessarily, datasets or subsets have to be downloaded to the local

machine and processing as well as rendering needs to be performed by the local

machine as well.

The three access options can be broken down into different steps needed, to access the data,

to process the data for visualisation, to perform interactive visualisation and to report results.

a) interfacing data storage

Data needed for visualisation is either stored by the HPC storage system or provided

by the user. Additionally, small to medium sized datasets can be hosted by the portal

system directly. Typical data storage access is provided via ssh/scp, which can be linked

to from the portal.

The procedure how to access the HPC workspaces depends on the HPC infrastructure

of the HPC centre 6. The type of services and procedures for getting access to the

available system in the CoeGSS project are described in detail within D5.1 chapter 8.

Datasets have to be transferred or mounted to the compute system, which is running

the associated reading instance of the COVISE net-file.

b) reading / processing data for visualisation

As mentioned the datasets for the visualisation need to be accessible by the associated

reading instance of the COVISE net-file, while the interactive visualisation is performed

by OpenCOVER, which is called by executing the same net-file.

Figure 1. Writing into (l.) and reading from (r.) COVISE binary data (RWCovise)

Even though having all reading, processing and rendering modules in one net-file

running on a single machine is the typical case, reading and processing may take a very

long time depending on input formats, size and performance of the local machine as

6 https://wickie.hlrs.de/platforms/index.php/Cray_XC40

 D3.6 Documentation and Software on Release 3 of the Portal

19

well as the reader implementation. To prevent running interactive jobs for a long time

or just to prevent longer waiting periods before the visualisation starts, the COVISE-

module rwcovise can be used, to read data into a covise binary file first and read from

the COVISE binary file with further processing modules later on. Hence, the net-file is

being split into a non-interactive processing part and an interactive visualisation part.

Reading COVISE binary files can be more efficient in many ways, for example, if only a

subset of the data or parameters are of interest or data has to be parsed from ASCII-

files. Additionally, the COVISE net-file, which runs reading as well as processing

modules can be run as a batch job on I/O nodes for instance. A net-file (Figure 1 l.) can

be run as a batch job as follows.

#covise example1.net --nogui –q

The --nogui parameter prevents COVISE from starting a graphical user interface

showing the net-file and pop-up windows, thus no display is needed. The -q parameter

terminates COVISE as soon as the net-file is processed.

However, one drawback with this procedure is that the user has to rerun the reading

and processing net-file every time if he wants to change the subset of data or he wants

to choose different parameters for the visualisation. Of course, the user can run it

multiple times in advance, if he wants to have multiple views or subsets like a data set

for every country in Europe instead of a complete dataset of Europe for example.

Incidentally, multiple COVISE data files can be loaded into one interactive visualisation

session at the time. The description and example files of the most important COVISE

modules like Converter, Filter and I/O-modules can be found within the COVISE online

documentation7.

c) interactive visualisation and user interaction

As mentioned in the beginning of this section, there are three options to run

visualisation on CoeGSS datasets. In addition to these three options, the processing

can be partitioned into reading/pre-processing and visualisation. With pre-processing

data for the visualisation done by a separate possibly non-interactive net-file, an

interactive visualisation can be started with minimal time needed to read/prepare the

data. As mentioned before, multiple datasets can be loaded for visualisation at the

same time. Here, the user has to find the trade-off between flexibility, pre-processing

and visualisation in the same session, and minimal time needed, batch pre-processing

and visualisation in different sessions.

7 https://fs.hlrs.de/projects/covise/doc/html/index.html

 D3.6 Documentation and Software on Release 3 of the Portal

20

While installing COVISE/OpenCOVER to a local machine is a common task for

experienced users, setting up a remote session or even a distributed session is a bit

more challenging. Setting up a distributed COVISE session requires access to all

involved machines. The COVISE session is controlled by the user from the MapEditor

on the local workstation.

Figure 2 shows the elements of an example for distributed working in COVISE. The

application consists of three modules: a module which reads in data (READ) a module

which extracts a special feature (FILTER) and a module which displays the extracted

data (RENDER). As the filter module consumes much CPU time and memory, it will be

started on a remote compute server, as well the Reader because the data to be read

in is on the remote machine. The first process started by COVISE is the Controller which

in turn starts the user interface process MapEditor and the data management process

the COVISE Request Broker (CRB). As soon as another host is included in the session, a

CRB is started on that computer. The read module is started on the local workstation,

the filter module on the remote computer and the renderer on the local workstation.

The green arrows between the processes Controller, MapEditor, CRB and the modules

indicate TCP sockets, the blue arrows indicate shared memory access.

When the module net-file is executed, the Controller sends a start message to the

remote read module. The read module reads in the data file and creates a COVISE data

object (1) in shared memory and after processing tells the controller that the module

has finished. The controller informs the filter module on the remote computer to start.

The filter module asks its data management process (CRB) for the data object (1). The

filter module now reads that data object, computes something and puts the data

object (2) into shared memory. It then tells the controller that it has finished. The

controller informs the renderer module to start. The renderer asks the CRB for object

(2) and as this object is not available on the local workstations the CRB transfers it from

 Figure 2 Distributed COVISE Session

 D3.6 Documentation and Software on Release 3 of the Portal

21

the compute server into the shared memory of the local workstation (2'). Now the

renderer can access this object and display the data.

Important to note here is, that memory intensive objects (1) only have to be stored in

memory on the remote compute server, while the filtered data (2) is exchanged with

the local workstation. Setup of distributed sessions is documented in detail within the

COVISE online documentation8.

Downloading, installing and using COVISE/OpenCOVER for post-processing and

visualisation on a local machine is possible anytime, installer files are available via the

support websites9 or via the github repository10. If the user has access to HLRS Hazel

Hen, COVISE/OpenCOVER can be used within an interactive VNC session via the

login/pre- and post-processing nodes as mentioned above.

d) reporting

Users have different possibilities to document results or specific views as well as to

write output files accordingly. To document specific views via screenshots of the

rendering currently observed, the OpenCOVER plugin PPTAddIn as already presented

in D3.5 can be used. This plugin enables users to define and to link screenshots

instantly into a Microsoft PowerPoint presentation for example, to track progress of

an investigation or data analysis.

Furthermore, the OpenCOVER plugin can be used to snap screenshots from the current

view or to record videos about the user’s view and interaction in the scene or the data

he is exploring (Figure 3).

To write/export data after processing for visualisation, various I/O-modules can be

used to write data into specific or user defined formats. A list of I/O-modules including

documentation can be found within within the COVISE online documentation11.

8 https://fs.hlrs.de/projects/covise/doc/html/usersguide/collab/collab.html
9 https://www.hlrs.de/solutions-services/service-portfolio/visualization/covise/support/
10 https://github.com/hlrs-vis/covise
11 https://fs.hlrs.de/projects/covise/doc/html/usersguide/collab/collab.html

Figure 3. OpenCOVER SnapShot and Video Plugin

 D3.6 Documentation and Software on Release 3 of the Portal

22

4.3.2 Examples from the pilots
In the following chapter, an overview of visualisation examples on datasets from the pilots is

given. These are not meant to demonstrate specific discoveries or characteristics within the

given datasets themselves, but to present possible use cases of visualisation tasks.

Pilot 1: Health Habits – Smoker Study

In COVISE it is possible to read selected or all time steps of a

simulation run, which are usually visualised as an animation.

Another possible visualisation is demonstrated in example 1

(Figure 4, Figure 5), in which each time step is shown by a

separate grid. This enables the user for example to investigate

the development of hotspots in the data visually without the

need of going forward and backwards on a time line.

This is being done within the StackSlices-module, instead of

mapping the read time steps into a time sequence, the time

steps are read into different slices, which can then be oriented

along the x-axis for instance. Specific time steps, which shall be

compared by the user, may be selected within the GetSubset-

module.

As shown in example 2, the same approach can be used to investigate the development of

various parameters next to each other (Figure 12). In this case all time steps of the parameters

were loaded in separate animated data grids. With running the animation of the time steps,

the user can investigate and compare the development of these parameters in parallel. Spatial

separation is done by using the Transform-module, which can be used to place the grid files

Figure 4. Covise net-file

(example 1)

Figure 5. Opencover output – visualisation of a time sequence (example 1)

Figure 6. Visualisation of specific parameters over time (example 2)

 D3.6 Documentation and Software on Release 3 of the Portal

23

in any 3D-position the user prefers. The scales of all three parameters are shown, which can

also be changed to different colour mappings.

In example 3 (Figure 13), the module DisplayUsg is being used. This module enables mapping

specific parameters from the dataset to a free selectable axis in space. In this case, one

parameter is mapped to the height of the map, while another parameter is mapped to the

colour of the map. This way the user can observe differences in the data represented in

different modalities of the visualisation. Also shown in this example, the processing of the data

is distributed to two separate machines. Indicated by different colours of modules in the

COVISE net-file, reading and processing is done by a server system, and the visualisation is

done by a laptop. This setup was chosen because the laptop has not enough memory to load

and process the datasets but has a capable graphics card to do the visualisation.

If the user wants to compare the height map of two different parameters, these two different

parameters may be mapped to different directions of an axis for instance. Example 4 shows

two different parameters, one mapped to the -y-axis and the other one to the +y-axis in

orthographic projection to prevent distortion of the data by perspective projection (Figure 8).

Pilot 2: Green Growth – Green Cars

Height maps have also been used in Pilot 2 – Green Growth to demonstrate using different

modalities on different parameters within the dataset shown in example 5 (Figure 10, Figure

9). A specific time step of the data is used to perform height displacement of the data grid.

Figure 8. Comparing height maps (example 4)

Figure 7. Height displacement of a specific parameter (example 3)

 D3.6 Documentation and Software on Release 3 of the Portal

24

The user may also use clipping of the data or the height map respectively to investigate the

height displacement in specific regions of the data.

The COVISE module StackSlice is usually used for medical datasets like CT-Scans for instance,

to stack a set of 2-dimensional images to get a 3D volume to perform volume rendering.

Example 6 presents a use case, in which this module was used to stack 2-dimensional slices,

with each slice representing the value at a specific time of a parameter (Figure 11). In this case

the parameter is a density value. Using clipping or the transfer function editor, the user can

observe spreading characteristics of the selected parameter.

Figure 10. Height displacement in orthographic projection (example 5)

Figure 9. Height displacement in perspective projection (example 5)

Figure 11. Volume rendering of a time sequence (example 6)

 D3.6 Documentation and Software on Release 3 of the Portal

25

4.3.3 List of requirements / status
The following table lists given requirements addressed by reports or deliverables so far. Even

though not all requirements can be resolved within the project due to needed effort or missing

dependencies respectively, future development of COVISE/OpenCOVER usually focuses

different aspects depending on users’ requests. Questions or requests may be addressed to

the COVISE mailing list12 anytime.

category description reference status

METHODS description reference

 visualise the results of SI simulations D4.1 (4.4)

 interact with simulation results in real time D4.1 (4.4)

visualization of full-blown runs, another tool that allows the
visualization of GIS data and time-series of statistical
figures D4.1 (6.7)

 compare multiple runs of the model D4.1 (6.7)

 brush subsets of data points D4.1 (6.7)

 two dimensional maps of cities D4.1 (7.5)

if possible, unfolding different features (population, traffic,
prices, pollution, etc.). D4.1 (7.5)

 analysing and interpreting the resulting data (general req) D3.1 (4.2)

methods to process huge and varying volumes of
unstructured data D3.1 (4.2)

 methods for additional data management. D3.1 (4.2)

 can handle incomplete information D3.1 (4.2)

 remote visualisation D3.1 (4.2)

 raw mode visualisation D4.2 (4.1)

 visualisation of geo-referenced data on a map D4.2 (4.2)

compute different aggregations based on shape-files (e.g.
regional and country level data) D4.2 (4.2)

 switch between cases D4.2 (4.2)

DATA
INTERFACE description reference

 HDF5 / Pandora Format

geo data is gridded on a 3432x8640 raster and encoded as
geotiff D4.1 (6.5)

 GSS synthetic population simulations D3.1 (4.2)

 Structured and unstructured data D3.1 (4.2)

 Regular and irregular patterns (lists, matrices, graphs) D3.1 (4.2)

 Read CSV D3.1 (4.2)

 I/O modules / general expandability D3.1 (4.2)

 CKAN interface D1.3 (5.2)

 access CKAN data directly D3.5 (4.3)

 access CKAN data by reference D3.5 (4.3)

 automation of defined processing D3.5 (4.3)

12 https://listserv.uni-stuttgart.de/mailman/listinfo/covise-users

 D3.6 Documentation and Software on Release 3 of the Portal

26

 process of data treatment must be tracked D4.2 (4.1)

automated and generic extraction from a given file and
aggregate it according to a given specification D4.2 (4.2)

 support GIS raster data D4.2 (7.4)

 import HDF5 tables D4.2 (7.4)

TOOL
INTERFACE description reference

 Pandora

 GLEAMviz simulator tool D4.1 (5.6)

 ggobi (http://www.ggobi.org/)

 CoSMo modelling software

 Hadoop D3.1 (3.3)

 Apache Cassandra D3.1 (3.3)

 R Project

 integrated versioning system for data sets (would be useful)

DATASIZE description reference

 large populations of up to a hundred million individuals D4.1 (5.6)

first tests using a simulation with about 150.000 agents and
100 time steps (the epidemic example of Pandora) D4.1 (6.7)

 support large number of agents (billions) and related data D4.2 (7.4)

ACCESS description reference

access visualization tools on HPC systems (resource
management) D4.1 (4.3)

 web based access to the visualisation D3.1 (4.2)

 data sets can be handled as private D4.2 (4.1)

 hiding parallel MPI code completely from the user D4.2 (7.1)

OS
SUPPORT description reference

 SUSE Linux SLES11

 Windows 7 64 bit

 Windows 8.1 64 bit D4.1 (7.5)

 Windows 10 64 bit

 Debian 7 (wheezy) 64 bit D4.1 (7.5)

 Debian 8 (jessie) 64 bit D4.1 (7.5)

 Ubuntu 14.04 LTS 64 bit D4.1 (7.5)

 OS X 10.10 64 bit D4.1 (7.5)

Hardware description reference

 3D virtual environments like CAVEs or a Powerwall D3.1 (4.2)

 2D Desktop D3.1 (4.2)

Table 1. Visualization requirements

 D3.6 Documentation and Software on Release 3 of the Portal

27

The status is given as follows (Table 2).

 fixed or solved

 partially solved, in development, under discussion or further tests needed

 open issue or request

 won’t fix because outdated or out of focus

 Needs further refinement

Table 2. Legend for table of visualization requirements.

4.4 CKAN data converter
The input data are imported from outside databases to the CoeGSS data management system

(based on the CKAN server) by the CKAN harvester, implemented as a CKAN plugin. During the

importing procedure data from outside sources are converted to:

• Database tabular format (easy to access and explore directly from the portal)

• HDF5 format

4.4.1 HDF5 conversion procedure
The conversion procedure is implemented in the CKAN DataPusher plugin. The plugin is a

standalone web service that automatically downloads any CSV, TXT or XLS (Excel) data files

from a CKAN site's resources when they are added to the CKAN site, parses them to pull out

the actual data, then uses the DataStore API to push the data into the CKAN site's DataStore.

We have implemented new methods to convert data from the specific input files to the HDF5

output format. We use a h5py Python library13. The newly implemented methods are saved in

a new file called hdf5convert.py in the DataPusher directory.

The HDF5 conversion procedure can be run in two ways:

- in one step - when the DataPusher plugin reads input files,

- in many steps - when the DataPusher plugin parses input records.

We have modified the DataPusher plugin source code in jobs.py file. After a successful

conversion to the HDF5 format the new file named [ORGINAL_FILE_WITH_EXT].H5 is uploaded

to the same dataset as the input file CSV/TXT/XLS(X).

13 http://www.h5py.org/

 D3.6 Documentation and Software on Release 3 of the Portal

28

Figure 12. The original CSV and HDF5 file in CKAN dataset.

4.4.1.1 Conversion from CSV, TXT
The first row in the CSV or TXT files is a header with titles of columns, and the other rows are

values. Since information about data types is not available, all values in the HDF5 output file

are going to be saved as strings. The lengths of characters are recognized in individual

columns and then a HDF5 file is created and filled in by data. The rows in which the number

of columns is different from the number of columns in the header are omitted.

By default the table name in the output HDF5 file is “data”.

Figure 13. The data converted from the CSV file.

 D3.6 Documentation and Software on Release 3 of the Portal

29

4.4.1.2 Conversion from XLSX
Similar to a CSV format, the first row in the XLS(X) file is a header with titles of columns, and

the remaining rows are values. Again information about data types are either not provided or

could be provided wrongly, so all values in the HDF5 output file are transformed to strings.

The length of characters in individual columns is recognized and then an HDF5 file is created

and filled in by data.

This implementation is supported by a python library xlrd https://pypi.python.org/pypi/xlrd.

By default the table name in the output HDF5 file is “data”. Only the first sheet from XLS(X)

files is converted.

Figure 14. The data converted from the CSV file.

 D3.6 Documentation and Software on Release 3 of the Portal

30

4.4.1.3 Performance tests
Extensive performance tests were conducted for CSV files of different sizes. Files were

imported from the MIDAS database14.

FILE SIZE / LINES CONVERSION
TO HDF5

FILE NAME

8 KB / 84 Lines 0.6 s iceland_admin.csv

20 MB / 167553 Lines 1m 40s household_vorarlberg.csv

74 MB / 640261 Lines 6m 55s household_sardegna.csv

115 MB / 765022 Lines 7m 16s household_theautonomousrepublicofcrimea.
csv

199 MB / 1336855 Lines 11m 15s people_westberlin.csv

255 MB / 1751555 Lines 16m 26s people_sardegna.csv

Table 3. Conversion time to hdf5 output format

As was expected, the conversion time grows nearly linearly with the number of rows to be

processed.

Figure 15. Conversion time to HDF5 format and processing time of the CKAN database vs
file size.

14 MIDAS http://data.olympus.psc.edu/

0 500 1000 1500 2000 2500 3000

8 KB / 84 Lines

20 MB / 167553 Lines

74 MB / 640261 Lines

115 MB / 765022 Lines

199 MB / 1336855 Lines

255 MB / 1751555 Lines

CONVERSION TO HDF5 [s] PROCESSING BY CKAN [s]

 D3.6 Documentation and Software on Release 3 of the Portal

31

As the number of rows grows, the conversion time to HDF5 format will be faster than the
processing time to the database tabular format. Results for XLS(X) and CSV/TXT input files
are very similar and depend only on the number of rows in the input files.

Figure 16. Conversion time to HDF5 format and processing time of the CKAN database vs
number of lines

The first “one step” method of conversion to HDF5 format (SUM PROC + CONV HDF5) is slower

for input files less than 700 000 rows.

When the input file has more than 700 000 rows, the summary time of processing to database

and conversion to HDF5 format is shorter than the execution time of the second method

(PROC & CONV TO HDF5).

The reasons of this fact are:

- conversion from a CKAN JSON input row to a Python table data,

- detection of string type value and if necessary encoding to UTF-8,

- resize time of the HDF5 dataset.

In the second method, the HDF5 output files are much larger than input CSV files and HDF5

files from the first method. As the row count and max string length of values in individual

columns are not known, a length of 32 characters is assumed.

84

167553

640261

765022

1336855

1751555

84

167553

640261

765022

1336855

1751555

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 500 1000 1500 2000 2500 3000

Li
n

es

Time [s]

PROCESSING BY CKAN [s] CONVERSION TO HDF5 [s]

 D3.6 Documentation and Software on Release 3 of the Portal

32

4.4.2 Exploring HDF5 files from the portal
There is a solution for browsing HDF5 files that can be integrated with the CKAN portal HDF

Server15. It is a Python-based web service that can be used to send and receive HDF5 data

using an HTTP-based REST interface. HDF Server supports CRUD (create, read, update, delete)

operations on the full spectrum of HDF5 objects including: groups, links, datasets, attributes,

and committed data types. As a REST service a variety of clients can be developed in JavaScript,

Python, C, and other common languages.

The HDF Server extends the HDF5 data model to efficiently store large data objects (e.g. up to

multi-TB data arrays) and access them over the web using a RESTful API. As datasets get larger

and larger, it becomes impractical to download files to access data. Using HDF Server, data

can be kept in one central location and content vended via well-defined URIs. This enables

exploration and analysis of the data while minimizing the number of bytes that need to be

transmitted over the network.

The h5serv was designed as a Web API, not a Web UI (though it is a great platform for building

a Web UI). Currently, the server always returns responses as JSON formatted text.

Figure 17. The default output from h5serv.

15 https://www.hdfgroup.org/2015/04/hdf5-for-the-web-hdf-server/

 D3.6 Documentation and Software on Release 3 of the Portal

33

Unfortunately, the HDF5 Group does not support the HDF Server for now. The WEB UI is not

available. The new project of web access to a HDF5 data is a cloud solution, which is not

addressed by our project.

 D3.6 Documentation and Software on Release 3 of the Portal

34

5 Software outlook
This section highlights ideas and plans regarding integration of the software components into

further releases of the portal. The current status of development of ABMS tools (Pandora,

AMOS) is presented with special emphasis on interfacing aspects. Next, an approach of

coupling the data analytics tools with the portal is described.

5.1 ABMS interface

5.1.1 Simulation workflow and lifecycle of the simulation
experiment

When using the portal for ABMS, interaction between the end user and the portal consists of

three steps – setting up the simulation experiment, launching the experiment, and browsing

the simulation results.

In the first step, the user applies a Web-based setup assistant to specify the simulation

experiment. It allows to choose the simulation framework, upload model sources, choose the

target hardware, define compilation options, select input/output files, and specify model

parameters. For further details on the simulation experiment wizard, we refer to the next

subsection.

As soon as the simulation experiment is prepared, it can be launched. The lifecycle of the

launched experiment consists of the following sequence of actions:

 creation of the workspace

This action implies loading an appropriate environment and deploying the model and input

data on the target platform. The portal's software opens a session for simulation and loads an

environment required for proper compilation and linkage. Next, it downloads model sources

along with requested input files from CKAN and puts them into an empty folder prepared for

the simulation experiment. Finally, it generates model configs if the selected ABMS framework

requires some.

 configuration, compilation, and linkage of the model

After preparing the workspace, the deployed model is configured, compiled, and linked

against the target framework libraries into an ABMS executable. If the model sources lack

configuration script (scons-script in case of Pandora or cmake-script in case of Amos), the

default one is generated. If this action fails, the user will be notified about an error via email

with attached configuration, compilation, and linkage logs.

 job submission

Depending on the job scheduling software of the target platform, either a Slurm or PBS job

script is generated and submitted. This job script may also include some command line

arguments for the ABMS executable if the user has specified those in the simulation

experiment setup.

 D3.6 Documentation and Software on Release 3 of the Portal

35

 uploading simulation results to CKAN and notifying the user

Once the job is finished, the simulation output is uploaded to CKAN. Afterwards, the user is

notified about job completion via email which contains links to the simulation results and the

profile of the experiment.

All these actions are performed automatically.

In response to the job completion notification, the user can browse the simulation results. If

further model runs are required, the user may update model parameters and/or target the

platform and relaunch the experiment.

5.1.2 Input/output parameters setup
The ABMS experiment setup is usually performed with aid of a corresponding Web-based

setup assistant included into the portal. In this subsection, we present a general interface of

the setup assistant and discuss interfaces of ABMS frameworks chosen to be introduced into

the portal.

Setup assistant
The Web-based setup assistant helps to specify details of the simulation experiment. In order

to accomplish this task, it guides the user through a sequence of 4 dialogue boxes.

In the first dialogue, the user is asked to specify the model, the ABMS framework, and the

third-party libraries (if model needs the latter). The model sources should be previously

uploaded to the CKAN server.

In the second dialogue, the user specifies locations for the input and output files and defines

values of the simulation parameters. The input files should be previously uploaded to the

CKAN server in a similar way to the model sources. The simulation parameters usually include

a number of simulation steps, a serialisation step, etc. In addition, the user can introduce and

assign values to the model-specific parameters if the model depends on some attributes

missing in the list of general parameters.

In the third dialogue, the user selects a compiler and (if needed) compilation options.

Finally, in the fourth dialogue, the user specifies hardware for the simulation. Namely, he/she

chooses the target platform and defines job parameters (such as required number of cores,

name of the job queue, etc.). In the combo-box, the setup assistant lists only those target

platforms of the HPC centres, which have a software defined in the first and the third

dialogues.

Pandora interface
As reported in D4.4, different existing ABM frameworks with HPC support were evaluated,

and Pandora has been chosen as one framework that should be part of CoeGSS tool chain. The

global model of the Green Growth pilot and the compartmental model of the Health Habits

pilot are implemented in Pandora (see e.g. D4.5).

 D3.6 Documentation and Software on Release 3 of the Portal

36

Beside the job submission and monitoring, the interface between Pandora simulations and

other tools are completely file-based.

The configuration of a simulation is defined in an XML file, per default Pandora tries to read a

file called config.xml from the same directory as the simulation binary. This file must

contain the following tags and attributes:

 <output>: The output tag has two attributes that define the file/directory name of

the generated output, the resultFile is described below, and log files will be

written to logsDir

 <numSteps>: value determines the number of steps that the simulation should

run. Every serializeResolution steps the state of the simulation is written to

the output files.

 <size>: The width and height attributes defines the spatial size of the

simulation

Beside those mandatory attributes, the user can add arbitrary tags and attributes to the xml-
file and access them easily using the getParamStr, getParamFloat … functions. The
standard defined for the CoeGSS tool chain is to use the tag params for attributes which can
be different for each simulation run, and can be set by other tools e.g. for the model
calibration.
Pandora does not come with built-in support for synthetic populations, or even more general

with built-in support for reading other files than the configuration file. PSNC has written an

Amos plugin that allows to read HDF5 tables in general, and synthetic populations in

particular. It is planned to adapt this plugin to the Pandora framework.

The output files of Pandora are described extensively by the Pandora documentation

distributed along with the Pandora package. The raster files can be easily read by tools that

support the HDF5 file format, like e.g. in R, using the h5read function of the rhdf5 package.

For the agent files a R function was written, that allows to aggregate the values of a registered

attribute for each step to create a time series for this attribute.

AMOS interface
As mentioned in the previous paragraph, Pandora covers basic needs related to the simulation

of agent-based models with GIS inputs, but it has a limited support of synthetic populations.

Moreover, it lacks any internal tooling for doing simulations with synthetic networks. And

while the HDF5 I/O plugin developed by PSNC should introduce support of synthetic

population input in Pandora, it cannot resolve the issue with synthetic networks. At the same

time, synthetic networks play an important role in modern GSS research. In order to cover this

gap, the portal requires an alternative framework which supports synthetic networks. As one

of the possible solutions, the Amos framework can be used.

Amos is an agent-based modelling toolkit intended for high-performance distributed

computing platforms. This project aims to equip global systems scientists with a user-friendly

 D3.6 Documentation and Software on Release 3 of the Portal

37

programming environment for constructing models without knowledge of low-level details of

parallel computing. Unlike Pandora, Amos allows agent interactions not only via spatial

relationships, but also via synthetic networks representing social relationships.

Amos is implemented in modern C++ using MPI for parallel communications. It is designed

trying to minimize the dependencies on third-party libraries in the core of the framework.

Apart from MPI, the recent version of the Amos core makes use of the Boost libraries only. At

the same time, the Amos design presumes that the core functionality can be easily extended

via plugins. Such plugins intend primarily to introduce new I/O formats and workload

distribution approaches, as well as to access third-party graph libraries. The sources of the

framework are configured and assembled by means of the CMake build system. The

framework uses the Google Test library for unit testing.

Amos inherits major architectural solutions from the Repast HPC framework [8]. In particular,

following Repast HPC, Amos models agents as objects, collections of agents as contexts and

the relationships between agents as projections. The framework core consists of (1) a data

transferring layer, which provides a unified interface for the data transferring calls, (2)

distributed containers, which hold instances of agents and sites, (3) projectors that specify

relationships between objects in distributed containers, (4) a load balancing layer, which aims

to minimize communications between processes while keeping workload distribution even,

and (5) I/O interfaces, which implement basic interfaces for loading and storing information

about synthetic population and environment. Amos’ focus is on reducing modeller efforts

related to tuning data exchange and agents' synchronization. As a result, it requires lower

levels of C++ and parallel programming proficiency compared to RepastHPC. Moreover, in

contrast to Repast HPC, the Amos framework follows the graph-based approach to workload

distribution described in D3.3 [14], whereas Repast HPC implements less accurate load

balancing techniques.

In Amos, the command line can be used to specify the configuration of a simulation. In this

case, the configuration parameters should be listed in a command line using a common Unix-

like format for arguments: “--parameter=value”. The names and meanings of these

parameters are the same as the parameters from the Pandora configuration files

(config.xml). In particular, --num-steps stands for the number of simulation steps, --

serialize-resolution stands for the serialization step, etc.

Amos consumes input files in CSV and HDF5 formats. The HDF5 support is implemented by

PSNC as a plugin to the core Amos functionality. In case of HDF5 format, synthetic population

and synthetic network data must be collected in the same file, following the format described

in D4.2 [4]. The input HDF5 file can also encode information about rasters and initial

distribution of the synthetic population between processes. In case of CSV format, synthetic

population and synthetic network are decoupled in two separate files. Optionally, the user

can specify a CSV file with the initial distribution of the synthetic population between

processes.

 D3.6 Documentation and Software on Release 3 of the Portal

38

5.2 Data analytics
The data analysis section is partitioned into two use cases. Small-scale (in-memory) analysis,

and large-scale (distributed) analysis.

5.2.1 In-memory analysis
R 16 is both a programming language and an environment for statistical computing. It is

interpreted (contra compiled) and licensed under the GNU General Public License v217 and has

support for all major operating systems. While R usage is widespread for doing statistical

analysis, a commonly acknowledged shortcoming of R is its execution speed and memory

efficiency. Thus, for data sets larger than what can comfortably fit in working memory, R

enjoys less usage. Data is typically loaded by reading files into working memory. Thus, file

storage access is needed.

RStudio Server18 is a web IDE (Integrated Development Environment) that support running

and editing R code, showing plots, etc. RStudio Server is a free open-source product from the

company named RStudio, licensed under Affero General Public License v319 (AGPLv3). There

exists a commercial alternative license.

16 https://www.r-project.org/
17 https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
18 https://www.rstudio.com/products/rstudio/
19 https://www.gnu.org/licenses/agpl-3.0.en.html

 D3.6 Documentation and Software on Release 3 of the Portal

39

Figure 18. RStudio Server example20.

For the free open source edition, an additional service layer may be necessary to handle

sessions and monitor processes, handling login/authentication, etc. These features are

provided in the commercial version (“Professional Edition”) for a yearly license fee.

Shiny21 is another product from RStudio, also licensed under AGPLv3, with which one can

produce interactive data visualizations for the web using R. You can either create a more

traditional web page with Shiny components or you can create an interactive document

(HTML and JavaScript). Either way, the visualizations are backed by a server which manages

the page. The server is expressed as an R function. The user-facing web server must therefore

support running an R process in addition to serving the web page.

20 https://www.rstudio.com/wp-content/uploads/2014/04/rstudio-windows.png
21 https://shiny.rstudio.com/

 D3.6 Documentation and Software on Release 3 of the Portal

40

Figure 19. Shiny example22.

The AGPLv3 license, used for RStudio Server and Shiny, requires that the source code of any

derivative work based on RStudio Server or Shiny must be made available to any user of the

work.

5.2.2 Demanding analysis
If we think of interfaces for demanding analysis, one of the most powerful and comprehensive

tools available today is Apache Zeppelin.

Apache Zeppelin23 is an open-source, web-based “notebook” that enables interactive data

analytics and collaborative documents. The notebook is integrated with distributed, general-

purpose data processing systems such as Apache Spark (large-scale data processing), Apache

Flink (stream processing framework), and many others.

22 https://static1.squarespace.com/static/54ad9bf4e4b0618d6af9be81/t/56afca0b3b0be33a1d3b443e/1454361388681/
23 https://zeppelin.apache.org/

 D3.6 Documentation and Software on Release 3 of the Portal

41

Figure 20. Apache Zeppelin multi-purpose notebook24

It supports multiple languages with an interpreter framework. Apache Zeppelin

interpreter 25 concept allows any language/data-processing-backend to be plugged into

Zeppelin. Currently Apache Zeppelin supports many interpreters such as Apache Spark,

Python, JDBC, Markdown and Shell. Currently, it supports interpreters such as Spark,

Markdown, Shell, Hive, Phoenix, Tajo, Flink, Ignite, Lens, HBase, Cassandra, Elasticsearch,

Geode, PostgreSQL, and Hawq. It can be used for data ingestion, discovery, analytics, and

visualizations using notebooks muck like to IPython Notebooks. Zeppelin notebooks

apprehend output from any language and visualize these using the same tools.

By means an interactive interface Zeppelin offers to you a global view of your analytical

results. Apache Zeppelin allows you to make beautiful, data-driven, interactive documents

with SQL, Scala, R, or Python right in your browser. Zeppelin offers the possibility of creating

a notebook from a web browser and experimenting with the different graphic components it

has to create wonderful visualizations that give an added value to analytical results.

Your notebook can be shared among collaborators. Then Apache Zeppelin will broadcast any

changes in real-time, just like the collaboration in Google docs.

In the context of CoeGSS project could apply covering the use cases that require a demanding

big data due to the common functional pattern in them would be something like: there is a

dataset, it is necessary to do something with the data and finally the user obtains

comprehensible data using some high level visualization paradigm.

24 http://zeppelin.apache.org/assets/themes/zeppelin/img/notebook.png
25 http://zeppelin.apache.org/docs/latest/development/writingzeppelininterpreter.html#
make-your-own-interpreter

http://zeppelin.apache.org/docs/latest/manual/interpreters.html
http://zeppelin.apache.org/docs/latest/manual/interpreters.html

 D3.6 Documentation and Software on Release 3 of the Portal

42

6 Summary
In the deliverable we presented the current status of tools and methods in development that

are intended to be implemented in release 3 of the portal.

The primary goal of this document is to present the interoperability aspect of the portal and

HPC/HPDA environments. That is why we focused mostly on interfacing dilemmas while the

description of the internal functionality development was presented concisely as it is not the

core interest of this report.

Many tools developed in the project like AMOS, Synthetic Population or Network

Reconstruction are highly innovative solutions and need time and consideration to be

implemented from scratch in a way that meets expectations in terms of functionality and

scalability. Another important demand is coupling them with the portal interface.

In many inventive systems, first ideas must be verified in practice and modified/adjusted

multiple times before an acceptable solution will be worked out. Therefore it must be

assumed that information described in this deliverable presents the current state of the

knowledge in the project which evolves with the development of the system.

During the next months, verification of proposed ideas and further advances of the practical

aspect of integration will be introduced and finally described in deliverable D3.7 in month M36

of the project lifetime.

 D3.6 Documentation and Software on Release 3 of the Portal

43

References
[1] P. Jansson, M. Lawenda, E. Richter, U. Woessner, C. Ionescu, M. Pałka, R.

Schneider, D. Dubhashi, M. Tizzoni, D. Paolotti, S. Fürst, and M. Edwards. D3.2 –

Specification of new method, tools and mechanisms proposed. Technical report,

CoeGSS, 2016.

[2] E. Richter, W. Schotte, C. Ionescu, R. Schneider, D. Dubhasi, and M. Lawenda. D3.1

– Available methods, tools and mechanisms. Technical report, CoeGSS, 2016.

[3] S. Wolf, D. Paolotti, T. Michele, M. Edwards, S. Fürst, A. Geiges, A. Ireland, F.

Schütze, and G. Steudle. D4.1 – 1st report on pilot requirements. Technical report,

CoeGSS, 2016.

[4] M. Edwards, S. Fürst, A. Geiges, L. Rossi, M. Tizzoni, and E. Ubaldi. D4.2 – 2nd

report on pilot requirements. Technical report, CoeGSS, TBD.

[5] S. Fürst. Comparing Repast HPC/Pandora. Technical report, CoeGSS, 2016.

[6] R. Schneider, S. Gogolenko, M. Gienger, and B. Koller. CoeGSS – ABM Software

stack. Technical report, CoeGSS, 2016.

[7] X. Rubio-Campillo. Pandora: A Versatile Agent-Based Modelling Platform for Social

Simulation. International Conference on Advances in System Simulation – SIMUL,

2014, pp.29-34. ISBN: 978-1-61208-371-1

[8] J.T. Murphy. High Performance Agent-Based Modeling in Repast HPC. Seminar,

Argonne, 2014. URL https://www.ci.uchicago.edu/events/high-performance-

agent-based-modeling-repast-hpc.

[9] Grant Agreement No. 676547: CoeGSS. Report, European Comission, 2015

[10] M. Gienger, N. Meyer, S. Petruczynik, R. Januszewski, A. Cheptsov, B. Koller. D5.1 –

Definition of the CoeGSS Operation Environment. Technical report, CoeGSS, 2015

[11] M. Gienger, B. Karaboga, P. Wolniewicz. D5.2 – First Operation Report. Technical

report, CoeGSS, 2016.

[12] F. J. Nieto, B. Karaboga, M. Gienger, A. Rivetti. D5.9 – Initial Portal Design. Technical

Report, CoeGSS, 2016.

[13] F. J. Nieto, B. Karaboga, M. Gienger, P. Wolniewicz. D5.10 – First Portal Release.

Technical report, CoeGSS, 2016.

[14] P. Jansson, et al. D3.3 – Second specification of new methods, tools and mechanisms

proposed for the support of the application user and programmer. Technical report,

CoeGSS, 2017.

 D3.6 Documentation and Software on Release 3 of the Portal

44

[15] R. Lambiotte, V.D. Blondel, C. de Kerchove, E. Huens, C. Prieur, Z. Smoreda, and

P. Van Dooren, Geographical dispersal of mobile communication networks, Physica A,

2008

[16] M. Barthelemy, Spatial Networks, Physical Review, 2011

[17] D. Lin, An Information-Theoretic Definition of Similarity, ICML '98 Proceedings

of the Fifteenth International Conference on Machine Learning, 1998

[18] I.T. Jolliffe, Principal Component Analysis, Series: Springer Series in Statistics,

2002

[19] http://www.stat.cmu.edu/~spew/

[20] F. J. Nieto, B. Karaboga, M. Gienger, P. Wolniewicz. D5.11 – Second Portal

Release. Technical report, CoeGSS, 2017.

 D3.6 Documentation and Software on Release 3 of the Portal

45

List of tables
Table 1. Visualization requirements ... 26

Table 2. Legend for table of visualization requirements. .. 27

Table 3. Conversion time to hdf5 output format ... 30

 D3.6 Documentation and Software on Release 3 of the Portal

46

List of figures
Figure 1. Writing into (l.) and reading from (r.) COVISE binary data (RWCovise) 18

Figure 2 Distributed COVISE Session .. 20

Figure 3. OpenCOVER SnapShot and Video Plugin .. 21

Figure 4. Covise net-file (example 1) .. 22

Figure 5. Opencover output – visualisation of a time sequence (example 1) 22

Figure 6. Visualisation of specific parameters over time (example 2) 22

Figure 7. Height displacement of a specific parameter (example 3) 23

Figure 8. Comparing height maps (example 4) .. 23

Figure 10. Height displacement in perspective projection (example 5) 24

Figure 9. Height displacement in orthographic projection (example 5) 24

Figure 11. Volume rendering of a time sequence (example 6) .. 24

Figure 12. The original CSV and HDF5 file in CKAN dataset. .. 28

Figure 13. The data converted from the CSV file. .. 28

Figure 14. The data converted from the CSV file. .. 29

Figure 15. Conversion time to HDF5 format and processing time of the CKAN database vs file

size. ... 30

Figure 16. Conversion time to HDF5 format and processing time of the CKAN database vs

number of lines .. 31

Figure 17. The default output from h5serv. ... 32

Figure 18. RStudio Server example. ... 39

Figure 19. Shiny example. .. 40

Figure 20. Apache Zeppelin multi-purpose notebook ... 41

file:///D:/PSNC/!Coegss/WP3/D3.6/CoeGSS-D3.6-ver.1.0.docx%23_Toc505116923
file:///D:/PSNC/!Coegss/WP3/D3.6/CoeGSS-D3.6-ver.1.0.docx%23_Toc505116924
file:///D:/PSNC/!Coegss/WP3/D3.6/CoeGSS-D3.6-ver.1.0.docx%23_Toc505116925
file:///D:/PSNC/!Coegss/WP3/D3.6/CoeGSS-D3.6-ver.1.0.docx%23_Toc505116926
file:///D:/PSNC/!Coegss/WP3/D3.6/CoeGSS-D3.6-ver.1.0.docx%23_Toc505116927
file:///D:/PSNC/!Coegss/WP3/D3.6/CoeGSS-D3.6-ver.1.0.docx%23_Toc505116928
file:///D:/PSNC/!Coegss/WP3/D3.6/CoeGSS-D3.6-ver.1.0.docx%23_Toc505116929
file:///D:/PSNC/!Coegss/WP3/D3.6/CoeGSS-D3.6-ver.1.0.docx%23_Toc505116930
file:///D:/PSNC/!Coegss/WP3/D3.6/CoeGSS-D3.6-ver.1.0.docx%23_Toc505116931
file:///D:/PSNC/!Coegss/WP3/D3.6/CoeGSS-D3.6-ver.1.0.docx%23_Toc505116932

