

D3.7 – FINAL REPORT ON
METHODS, TOOLS AND
MECHANISMS FOR THE
FINAL PORTAL RELEASE

Grant Agreement 676547

Project Acronym CoeGSS

Project Title Centre of Excellence for Global Systems Science

Topic EINFRA-5-2015

Project website http://www.coegss-project.eu

Start Date of project October 1, 2015

Duration 36 months

Deliverable due date 30.09.2018

Actual date of submission 4.10.2018

Dissemination level Public

Nature Report

Version 1.0

Work Package WP3

Lead beneficiary PSNC

Responsible scientist/administrator Marcin Lawenda (PSNC)

Contributor(s)

Piotr Dzierzak (PSNC), Cezar Ionescu, Patrik Jansson,
Michał Pałka, Johan Lodin (CHALMERS), Sergiy
Gogolenko, Wolfgang Schotte (HLRS), Eva Richter (UP),
Fabio Saracco (IMT), Steffen Fuerst (GCF)

 D3.6 Documentation and Software on Release 3 of the Portal

1

Internal reviewers
Sarah Wolf (GCF), Tiziano Squartini (IMT)

Keywords HPC, Domain Specific Language, Synthetic Information
System, Scalability, Visualisation, Co-design, portal,
Global Systems Science, HPC, centre of excellence,
CoeGSS, data management, synthetic population,
synthetic network, data analysis, ABMS, CKAN, Moodle,
AskBot, LDAP

Total number of pages: 54

 D3.6 Documentation and Software on Release 3 of the Portal

2

Copyright (c) 2018 Members of the CoeGSS Project.

The CoeGSS (“Centre of Excellence for Global Systems Science”) project is

funded by the European Union. For more information on the project please

see the website http:// http://coegss-project.eu/

The information contained in this document represents the views of the CoeGSS as of the date

they are published. The CoeGSS does not guarantee that any information contained herein is

error-free, or up to date.

THE CoeGSS MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY PUBLISHING

THIS DOCUMENT.

Version History

 Name Partner Date

From
Marcin Lawenda

PSNC July 27th, 2018

Contribution

from

Michał Pałka, Patrik Janson, Johan

Lodin, Fabio Saracco, Wolfgang

Schotte, Piotr Dzierżak, Steffen Fuerst,

Sergiy Gogolenko, Eva Richter

ATOS,

Chalmers,

IMT, ISI,

HLRS, PSNC,

GCF

September 14th,

2018

Version 0.66
for internal review PSNC September 21st,

2018

Reviewed by
Sarah Wolf

Tiziano Squartini

GCF

IMT

September 24th,

2018

Version 1.0 for

submission

Marcin Lawenda PSNC October 4th,

2018

Approved by
Coordinator UP October 4th,

2018

 D3.6 Documentation and Software on Release 3 of the Portal

3

Abstract
This document is foreseen as a continuation of the previous deliverable D3.6 where

achievements were addressed in implementing services specified in the deliverable D3.2 as

far as they were realized to be integrated in release 3 of the portal. Moreover, it addresses

other WP3 achievements in the implementation of methods, tools and mechanisms foreseen

by the CoeGSS workflow. The focal point is placed on binding portal and HPC functionality to

ensure their correct cooperation.

 D3.6 Documentation and Software on Release 3 of the Portal

4

Table of Contents
Abstract .. 3

Table of Contents ... 4

Glossary .. 5

1 Introduction ... 8

2 Enhanced Reliability and Scalability .. 9

3 Data Analytics .. 14

4 Remote and Immersive Visualisation Systems ... 18

5 Domain Specific Languages (DSLs) .. 24

6 Network reconstruction tool ... 33

7 Representing Uncertainty in Modelling and Computation ... 37

8 Hardware and software co-design .. 39

9 Portal – HPC interoperability .. 45

10 Summary .. 48

References .. 49

List of tables ... 52

List of figures .. 53

 D3.6 Documentation and Software on Release 3 of the Portal

5

Glossary
3D Three-dimensional space.

ABM Agent-Based Model

ABMS Agent-Based Modelling and Simulation

Apache Spark an open-source cluster-computing framework

API Application Programming Interface

AskBot a popular open source Q&A Internet forum

BLAS Basic Linear Algebra Subprograms

CAVE

Cave Automatic Virtual Environment (an immersive virtual reality
environment)

CFD Computational Fluid Dynamics

CKAN Comprehensive Knowledge Archive Network

CMAQ Community Multiscale Air Quality

CoE Centre of Excellence

CoeGSS Centre of Excellence for Global Systems Science

COVISE Collaborative Visualization and Simulation Environment

CPU Central Processing Unit

CRB COVISE Request Broker

CSS Cascading Style Sheets

CSV Comma-Separated Values file format

Cuda a parallel computing platform and API model created by Nvidia

D Deliverable

DCAT Data Catalog Vocabulary

DDR (DDR SDRAM) Double Data Rate Synchronous Dynamic Random-Access Memory

Django a free and open-source web framework, written in Python

DSL Domain-Specific Language

EC European Commission

Eclipse CDT Eclipse C/C++ Development Tooling

GB Gigabyte

GB/s Gigabytes per second

GDDR Graphics DDR SDRAM

GHz Gigahertz

GIS Geographic Information System

GitHub a web-based VCSs repository and Internet hosting service

GPU Graphics Processing Unit

 D3.6 Documentation and Software on Release 3 of the Portal

6

GSS Global Systems Science

HDF5 Hierarchical Data Format, version 5

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

I/O Input/Output

IDE Integrated Development Environment

IP Internet Protocol

IPF (IPFP) Iterative Proportional Fitting Procedure

LDAP Lightweight Directory Access Protocol

M month

Moodle a free and open-source software learning management system

MoTMo Mobility Transition Model

OpenCOVER
Open COVISE Virtual Environment (an integral part of the COVISE
visualization and simulation environment)

OpenSWPC Open-source Seismic Wave Propagation Code

PBS Portable Batch System (computer software that performs job scheduling)

PDF Portable Document Format

PostgresSQL
(Postgres)

an object-relational database with an emphasis on extensibility and
standards compliance

Q&A software (FAQ
Service) a Web service that attempts to answer questions asked by users

RAID

Redundant Array of Independent Disks (a data storage virtualization
technology)

RAM Random-Access Memory

RDF
Resource Description Framework (a family of W3C specifications
designed as a metadata model)

SCM Software Configuration Management

SI Synthetic Information

SLURM (Slurm)
Simple Linux Utility for Resource Management (workload manager, job
scheduler)

SM Streaming Multiprocessor

SQL Structured Query Language

SSH Secure Shell (a cryptographic network protocol)

SSO Single Sign-On

TCP Transmission Control Protocol

TB Terabyte

TOSCA Topology and Orchestration Specification for Cloud Applications

VCS Version Control System

 D3.6 Documentation and Software on Release 3 of the Portal

7

VNC Virtual Network Computing

VR Virtual Reality

W3C World Wide Web Consortium

WP Work Package

XLS Excel Binary File Format

 D3.6 Documentation and Software on Release 3 of the Portal

8

1 Introduction
With this deliverable, we are providing the knowledge and arrangements we gained and

developed since the previous documents, D3.6 & D3.4, which should be taken as

complementary when reading this deliverable.

Originally, this deliverable (D3.7) was designed to provide the knowledge from the field of

methods, tools and mechanisms designed for the final portal release. As work in other WP3-

areas was also continued, we would like to seize this opportunity and report them as well.

This deliverable is organized as follows. Chapter 2 focuses on increasing software realiability

by using a dedicated library for checkpointing functionality called Distributed MultiThreaded

Checkpointing (DMTCP). Section 3 is on data analytics using the Dakota software. There are

two aspects discussed: interoperability with Cloudify and the calibration process. Chapter 4

applies visualization implementation in respect of portal integration. All necessary stages are

presented starting from installation and data access through generation of COVISE net-files

and optimization to finalizing with running interactive visualization.

In chapter 5, we describe the current status of the domain specific language implementation

in the following areas: high-level design, data description and synthetic population

generation. The section 5.5 is devoted to describing the synthetic population tool for

generating data based on micro-samples. The network reconstruction tool is elaborated in

chapter 6. Here we focused on parallelization efforts improving software performance and

some aspects towards portal integration. Chapter 7 is about uncertainty efforts and results

stemming from the analysis of the n-dimensional IPF algorithm. The co-design achievements

are described in section 8. Some information about performance of the HDF5 extension library

are provided as well as analysis of benchmarks from the co-design perspective.

In chapter 9, we discuss technical issues on interoperability in Portal-HPC relation with the

main focal point on software description using TOSCA (Topology and Orchestration

Specification for Cloud Applications) specifications.

 D3.6 Documentation and Software on Release 3 of the Portal

9

2 Enhanced Reliability and Scalability
The calculations and simulations in the CoeGSS project can take long hours. In the event of a

software or hardware failure, it is worth to use checkpointing software to not lose the results

or start again the application. In this chapter, we report on how we analyzed the available

checkpointing software and performed tests.

Software Checkpointing
method

Multithread Programming
languages

Source code
modification

Last update

SWIFT Application-

level

checkpointing

NO C, C++ YES 14.12.2014

Berkeley
Lab
Checkpoint
/ Restart

Kernel and
software
implementation

YES, MPI C, C++ YES 29.01.2013,
v 0.8.5

FTI Application-
level
checkpointing

YES C, Fortran YES 22.05.2018

DMTCP Application-
level
checkpointing

YES, MPI,
OpenMP

C, C++,
Python, Perl

NO 15.11.2017,
v 2.5.2

Table 1. Checkpointing software overview

We have analyzed the checkpointing software described in Table 1 and selected the DMTCP

(Distributed MultiThreaded Checkpointing) tool for testing. It operates directly on the user

binary executable, with no Linux kernel modules or other kernel modes. Distributed

MultiThreaded Checkpointing transparently checkpoints a single-host or distributed

computation in the user-space – with no modifications to user code or to the O/S. Among the

Linux applications supported by DMTCP are Open MPI, MATLAB, Python, Perl, and many

programming languages and shell scripting languages. DMTCP also supports GNU screen

sessions, including vim/cscope and emacs. With the use of TightVNC, it can also checkpoint

and restart X-Window applications, as long as they do not use extensions (e.g.: no OpenGL, no

video). The DMTCP package enables one to checkpoint a program, and restart it again from

the point at which the checkpoint was taken. With DMTCP the following happens when a

checkpoint is taken from a running program:

¶ the program is halted

¶ the state of the program is written to a file

¶ the program is started again from the point it was halted

There is the possibility to install the DMTCP software from a Linux repository (Ubuntu,

Debian), but we decided to compile and install the latest version from a DMTCP project home

page [1].

 D3.6 Documentation and Software on Release 3 of the Portal

10

Firstly, we tested simple programs in C, C++ and Python to see how the DMCTP works. Example

of source code of test program in C language:

#include <stdio.h>

int main(int argc, char* argv[]) {

 int count = 1;

 while (1) {

 printf(" %2d ", count++);

 fflush(stdout);

 sleep(2);

 }

 return 0;

}

Running the program without DMTCP:
$./dmtcp1

1 2 3 ^C

Running the program with a DMTCP tool:
$ dmtcp_launch -- interval 5 ./dmtcp1

1 2 3 4 5 6 7 8 9 10 ^C

The DMTCP created three new files:
$ du - h *

2.7M ckpt_dmtcp1_76b9252f05c9c5cf - 40000 - 1f1d0c5c5cec3a.dmtcp

12K dmtcp1

4.0K dmtcp1.c

16K dmtcp_restart_script_76b9252f05c9c5cf - 40000 - 1f1d0c1e2a9e7c.sh

4.0K dmtcp_restart_script.sh

The result of the program with a DMTCP restart command:
$ dmtcp_restart ckpt_dmtcp1_76b9252f05c9c5cf - 40000 - 1f1d0c5c5cec3a.dmtcp

10 11 12 13 14 15 ^C

The program has successfully continued the calculation since the last interruption. The interval

parameter specifies how often the checkpoint should be performed. In the restart procedure,

we should specify the image file with the extension .dmtcp . We performed similar tests for

programs written in C++ and Python languages. For all cases, the results were identical.

Finally, we performed tests for matrix multiplication programs written in C++/MPI,

C++/OpenMP and Python/MPI. We adopted the matrix size of 5120 rows and columns. The

calculations were done on a virtual machine with 48 processor cores (Intel Xeon E312xx Sandy

Bridge) and 248 GB of RAM. We made 10 repetitions for each number of threads without

DMTCP and with DMTCP with interval 60 seconds and 30 seconds.

THREADS

AVG Time [s]

MPI

MPI +
DMTCP
(interval
60s)

MPI +
DMTCP
(interval
30s) OpenMP

OpenMP
+ DMTCP
(interval
60s)

OpenMP
+ DMTCP
(interval
30s) Python

Python +
DMTCP
(interval
60s)

Python +
DMTCP
(interval
30s)

8 799 942 1072 825 936 1078 840 1064 1126

16 439 524 569 423 504 550 443 540 577

32 332 421 464 302 359 373 349 431 469

 D3.6 Documentation and Software on Release 3 of the Portal

11

48 375 525 584 303 362 376 386 551 594

Table 2.2 The average multiplication time for a particular number of threads for C++/MPI,

C++/OpenMP and Python/MPI

The best test results of all tests were obtained by C++/OpenMP with 32 threads. In all cases,

we obtained the longest calculations on 8 threads, and the shortest on 32 threads. The use of

DMTCP software has extended the computation time.

Figure 1. The graph presents the AVG matrix multiplication time for C++/MPI

The point of inflection in the graph is in place of 32 threads. The computation time on 48

threads is slightly larger than the time of 16 with DMTCP tool usage.

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

TI
M

E
[s

]

THREADS

MPI MPI + DMTCP (interval 60s) MPI + DMTCP (interval 30s)

 D3.6 Documentation and Software on Release 3 of the Portal

12

Figure 2. The graph presents the AVG matrix multiplication time for C++/OpenMP

The point of inflection in the graph is in place of 32 threads, but the values of computation

time are very similar to the point of 48 threads.

Figure 3. The graph presents the AVG matrix multiplication time for Python/MPI

The point of inflection in the graph is in place of 32 threads. In the case of Python / MPI, the

calculation lasted the longest, but at an acceptable level.

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

TI
M

E
[s

]

THREADS

OpenMP OpenMP + DMTCP (interval 60s) OpenMP + DMTCP (interval 30s)

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

TI
M

E
[s

]

THREADS

Python Python + DMTCP (interval 60s) Python + DMTCP (interval 30s)

 D3.6 Documentation and Software on Release 3 of the Portal

13

Using the DMTCP tool, developers can significantly improve the reliability of the applications.

Depending on the number of intervals, the program execution time increases by several or

more percent. In our opinion, the value of interval time should be appropriately matched to

the size of the task. A heavily extended calculation time can result in more electricity

consumption or no completion at the agreed time.

The DMCTP tool can be useful in complex models in the CoeGSS project. It can reduce the time

of the calculation and simulation time in the event of a hardware failure.

 D3.6 Documentation and Software on Release 3 of the Portal

14

3 Data Analytics
In Deliverable 3.4, the Dakota [2] software for parameter studies and model calibration is

described. In Deliverable 5.12, the Cloudify [3] software for cloud orchestration and a HPC

plugin customized for CoeGSS is described. Cloudify provides a way to deploy and execute

models on the portal with precise configuration of both the environment and the models,

giving an easy way to reproduce both the execution environment as well as the model/Dakota

output. In the rest of the chapter we describe how we connect Dakota and Cloudify.

3.1 Dakota – Cloudify interoperability
Cloudify uses so called blueprints, and the Dakota blueprint looks like this:

 node_templates:

 first_hpc:

 type: hpc.nodes.Compute

 properties:

 config: { get_input: coegss_hlrs_laki }

 external_monitor_entrypoint: { get_input:

monitor_entrypoint }

 job_prefix: { get_input: job_prefix }

 base_dir: "$HOME"

 workdir_prefix: "dakota"

 skip_cleanup: True

 single_job:

 type: hpc.nodes.job

 properties:

 job_options:

 type: 'SBATCH'

 modules:

 - dakota/6.8

 - python/2.7.14

 command: "launch - dakota.sh"

 skip_cleanup: True

 relationships:

 - type: job_contained_in_hpc

 target: first_hpc

 outputs:

 single_job_name:

 description: single job name in the HPC

 value: { get_attribute: [single_job, job_name] }

The blueprint is configured by some inputs, shown by { get_input: ... } in the blueprint.

Inputs are not model inputs, but instead blueprint inputs. An example is shown below:

 monitor_entrypoint: "193.144.35.146"

 job_prefix: "coegss_"

 # HLRS Laki cluster configuration

 coegss_hlrs_laki:

 credentials:

 host: "cl3fr2.hww.de"

 D3.6 Documentation and Software on Release 3 of the Portal

15

 user: ""

 password: ""

 login_shell: true

 country_tz: "Europe/Stuttgart"

 workload_manager: "TORQUE"

 # PSNC Eagle cluster configuration

 coegss_psnc_eagle:

 crede ntials:

 host: "eagle.man.poznan.pl"

 user: ""

 password: ""

 login_shell: false

 country_tz: "Europe/Posnan"

 workload_manager: "SLURM"

Here, the user fills in her/his credentials.

When the blueprint is uploaded and deployed, which is done by a sequence of commands

detailed in Deliverable 5.12, all files in the directory of the blueprint are also uploaded to the

execution server. Among them is the launch - dakota.sh script. The specific contents of the

script are model dependent, although commonalities exist such as configuration of the

workload manager for the target system.

It should be noted that a blueprint is a complete description of the model run, i.e. you do not

pass any configuration to the model after the model is deployed. This assures consistency and

reproducible results.

Currently, configuration of the model in the Green Growth pilot is done by combining a

configuration file written in Python with a Dakota input template. The resulting Dakota input

file can then be edited with study specific changes. A portal solution that uses Dakota’s GUI

would then be limited since the user would work with the generated file rather than the “full”

configuration.

As described in D3.6, the model output can be visualized using the R package Shiny [4]. Each

model necessarily needs to have its own custom Shiny instance. In combination with the

configuration setup above, a GUI would be more user effective compared to using Dakota’s

GUI directly, by being a model specific configuration GUI (for both the model and the Dakota

configuration) that works in tandem with the visualization implemented using Shiny. When a

model configuration has been executed, it can then be visualized using Shiny.

3.2 Calibration process
As described in D3.4, section 8.2, Dakota is used for calibrating the agent based SIS “Mobility

Transition Model” (MoTMo). Preliminary results are described in D4.6, section 3.2. As

 D3.6 Documentation and Software on Release 3 of the Portal

16

mentioned above, the needed input files for Dakota are generated by a python script1 which

combines templates of those Dakota input files with a configuration description. This is

especially useful if you have many parameters or responses which you can generate from a

list (e.g. of regions or years). E.g. in the MoTMo case, we fit the car fleet of combustion cars

and the car fleet of electric cars for the years 2012-2017 for each federal state of Germany,

which results in 192 responses. Writing an input file by hand for those 192 responses would

be cumbersome and error-prone.

The work done for integrating Dakota into MoTMo was also carried over to the ABM4py

framework, which is described in detail in D3.8. In short, to use Dakota for a model developed

with the ABM4py framework, the following steps must be carried out:

¶ Adjust the model:

The parameters that are set by Dakota must be accessed in the model via

world.getParameter() . The calls to world.setParameter() are ignored when

the run is started by Dakota. So, direct assignments of parameters to variables must be

rewritten as

world.setParameter('imitation', 0.2)

foo = world.getParameter('imitation')

¶ Create a response-script:

The results of a simulation are returned to Dakota in an own python script that is called after

the simulation has run. This script must contain one function, calcResponses , which gets

the response object from the Dakota.interfacing python module as a parameter (see

section 10.7.4 of the Dakota manual (v6.8) for more details about the response object).

¶ Create a config file:

This is the small python script mentioned above, which contains dicts for e.g. responses,

continuous variables, static string …

¶ Generate the Dakota input file:

Run the script create - infile - from - template.py to generate the Dakota input file.

Open this file to edit the study specific parts, e.g. the number of samples that should be drawn,

or the evaluation_concurrency .

¶ Run Dakota:

This can be done directly by creating a batch script that matches e.g. the

evaluation_concurrency , or by using the Cloudify blueprint for Dakota, as described

in section 3.1.

1 create - infile - from - template.py from the dakota subfolder of the ABM4py
repository: https://github.com/CoeGSS - Project/abm4py

 D3.6 Documentation and Software on Release 3 of the Portal

17

More details about the Dakota integration into ABM4py framework are described in the How-

to - use - Dakota.pdf , which can be found in the dakota subfolder of the ABM4py

repository.

 D3.6 Documentation and Software on Release 3 of the Portal

18

4 Remote and Immersive Visualisation Systems
Within the project, the focus of the Visualisation Task is to develop and to provide remote and

immersive visualisation services to the consortium partners as well as to CoeGSS users. These

services are coupled to the CoeGSS portal regarding the defined workflow as described in D3.2

as well as the requirements described in D3.5. A main goal of these services is to provide

access to high-performance, highly sophisticated visualisation integrated in a seamless

manner in order to create an “Immersive Analytics Environment” for huge statistical and

multidimensional datasets.

This subsection will describe the resulting process and final developments on interfaces to

access datasets with respect to the proposed workflow definition as well as modules to read,

process and visualise given datasets.

4.1 Visualisation Workflow
The visualization tools for remote and immersive visualizations should enable CoeGSS users

to analyse large and complex data sets and to make well-founded decisions based on them.

The ability to work interactively with the data plays a particularly important role here. This

enables a significantly better understanding of the data and enables the user to gain an insight

into data relations. Web-based renderers are usually limited in performance as well as

functionality and are not suitable for the interactive visualization of such extensive data sets.

Furthermore, the IT infrastructure used to host the data usually does not provide the

necessary hardware, such as high-performance graphics cards.

For this reason, three different scenarios were proposed by Deliverable D3.5, which describe

how the CoeGSS user gets access to data and visualization tools using remote, hybrid or local

sessions. Depending on user requirements such as data size for instance, it is possible to view

the data on the local laptop, for example, or to use HPC resources, which the user uses anyway

to simulate his data. It is also possible to combine both methods with the computing and

rendering capacity available on site. The basic operation of the COVISE/OpenCOVER software

was described in D3.6 already.

The basic procedure consists of the following steps:

1. installation of the software / gain access authorization to required resources

2. data access

3. downloading the data to the local/remote system

4. generating a COVISE net-file

5. optimizing data processing / preparing the visualisation

6. running an interactive visualisation session

Depending on the kind of session the CoeGSS user wants to initiate, the procedures differ

marginally. The procedure is described in more detail below as a general example.

 D3.6 Documentation and Software on Release 3 of the Portal

19

4.1.1 Installation of the software /
gain access authorization to required resources

As already described in Deliverable D3.1, the COVISE/OpenCOVER software is available for

Windows, Linux and MacOS and can be downloaded from the following website.

 https://fs.hlrs.de/projects/covise/support/download/

The source code can be viewed and downloaded from the following website:

 https://github.com/hlrs-vis/covise

The documentation of the software COVISE and OpenCOVER as well as tutorials, references

and workshop slides are also available online.

 https://www.hlrs.de/solutions-services/service-portfolio/visualization/covise/documentation/

If the visualization should run on a local user system, the software has to be installed there. If

the CoeGSS user requires using a pre- and post-processing node or a visualization node of an

HPC system (see deliverable D3.5), access must be requested in accordance with deliverable

D5.1.

After completing this step, the CoeGSS user should have a local COVISE/OpenCOVER

installation or should have access to a corresponding remote system.

4.1.2 Data access
Due to the fact that a typical web server infrastructure for an interactive 3D visualization will

probably not be able to provide suitable hardware and that the CoeGSS user will get access to

HPC resources including any existing visualization frontend anyway, the integration of the

rendering frontend into the web server environment seems to be less practical and

performant. The interactive remote visualization must assume that the CoeGSS user has the

corresponding accesses and resource allocations locally or within an HPC centre.

The CoeGSS user has the possibility to review his data within the portal and can select sections

or subsets of his data for visualization. For this data compilation, the CoeGSS user is provided

with a data link to his data via which he can access the data from other systems.

With completing this step, the CoeGSS user should have received a link to the data stored or

referenced by the CoeGSS portal, which allows the authorized user to download the data.

4.1.3 Downloading the data to the local/remote system
Once the CoeGSS user has received a link to his data, the data must be downloaded from the

CoeGSS portal to the local or remote system. Common file transfer protocols such as wget or

scp can be used. This may depend strongly on security restrictions of the local computer or

the HPC system.

 D3.6 Documentation and Software on Release 3 of the Portal

20

After completing this step, the data should be accessible by the local or remote system and

available for further processing.

4.1.4 Generating a COVISE net-file
If the data is accessible to the machine supposed to run COVISE, the next step is to start

COVISE within a graphical environment. Instructions for starting a graphical environment

including OpenGL support on the login, visualisation or pre- and postprocessing nodes of a

HPC system can be found in the individual descriptions of the system. Depending on the data

format used, different reading modules are available. The HDF5 file format, as preferred by

the CoeGSS project, can be loaded using the COVISE module ReadHDF5 or ReadPandora

(Figure 4).

Figure 4. The COVISE ReadPandora module

It is common practice to start with small data sets or a subset to avoid delays caused by initial

loading time during development of the first COVISE map. To achieve this, for example, the

module GetSubset can be used to generate a subset of data (Figure 5).

Figure 5. The COVISE GetSubset module

 D3.6 Documentation and Software on Release 3 of the Portal

21

It can be useful to perform a visualization using OpenCOVER in early stages of development

by adding the module OpenCOVER to the COVISE map to start the rendering engine.

The goal of this step is to create a first COVISE map that defines the post-processing and

prepares the data for the actual interactive visualization.

4.1.5 Optimizing data processing /
preparing the visualisation

As already described in deliverable D3.6, various optimization options are available, which are

strongly dependent on how the data is structured or has been processed so far, as well as on

available computing resources.

A) For example, it is possible to significantly shorten the sometimes very time-consuming

reading process in a visualization session if the data selection and reading into a COVISE data

container is done in advance. This can be done, for example, by using the GetSubset and

RWCovise modules in a separate COVISE map dedicated to run this task (Figure 6).

Figure 6. Typical setup of the RWCovise module

Adapting the COVISE map from step 4, now data is no longer read from the raw data (Figure

6, left view), but is read from a COVISE data container (Figure 6, right view). Depending on the

data, this can save a considerable amount of time if the raw data is available as ASCII data

only, for example, or if it contains a lot of data that is not of interest for the specific

visualization.

B) The local session (see deliverable D3.6) can be changed directly into a hybrid session, if, for

example, further computers are available for reading and processing the data. Within COVISE,

other computers can be added as CSCW hosts, which then take over dedicated tasks.

For example, reading can be done on an I/O node (Figure 7, processes in yellow), processing

can be done on a memory node (Figure 7, processes in green) and visualization on a typical

laptop (Figure 7, processes in blue) with an adequate graphics card. Certain processes of a

COVISE map can be moved on the fly to other computers to which the user has access

interconnected with appropriate bandwidth.

 D3.6 Documentation and Software on Release 3 of the Portal

22

Figure 7. Distributed processing within COVISE

This has several advantages, for example, if the processing of the data requires a machine with

more memory or computing power than the local system, the processing can be distributed

to high-performance machines within the network.

Finally, with this step, the CoeGSS user should have a running COVISE net-file that can read

and process the prepared data and transfer it directly to the visualization.

4.1.6 Running an interactive visualisation session
For visualization of the data, it is finally only necessary to drag the OpenCOVER renderer into

the COVISE map editor. This automatically loads and starts the configured visualization

frontend. As mentioned in D3.1, it is possible to use OpenCOVER in various visualization

environments. For example, it can be configured for an L-Bench, a Powerwall or a CAVE.

Examples of such configurations can be found in the COVISE project repository:

 https://github.com/hlrs-vis/covise/tree/master/config

In the visualization frontend OpenCOVER, there are various possibilities to interact with the

visualisation and the visualised content as well as performing documentation of the user’s

work within the virtual environment. To control the visualisation, the TableUI (Figure 8) can

be used, which represents a 2D-GUI and contains standard control elements as well as control

elements for all active plug-ins.

 D3.6 Documentation and Software on Release 3 of the Portal

23

Figure 8. The TableUI standard view

Plug-ins can also be started and used here, for example to take screenshots or video

recordings.

4.2 Conclusion
The described workflow enables the CoeGSS user to further examine data uploaded to the

CoeGSS portal, review the data as well as process the data and compute simulations by HPC

and finally run an interactive visualization session on his data or simulation results. For this

purpose, the CoeGSS user can use the software COVISE/OpenCOVER, which focuses on

interactive scientific data visualization. The rendering can be realized on different output

devices from standard displays over 3D screens up to powerwalls and CAVEs. The software

COVISE offers additionally for this project developed or further developed modules and plug-

ins, which are adapted to typical GSS data formats or GSS methods. The open source software

COVISE and the renderer OpenCOVER offer the possibility to extend and improve these

modules as well as the general functionality at any time, so that future visualization

requirements can be implemented as required.

 D3.6 Documentation and Software on Release 3 of the Portal

24

5 Domain Specific Languages (DSLs)
Earlier CoeGSS methods deliverables D3.2-D3.3 identified gaps in the functionality provided

by state-of-the-art tools that are used for the development of Synthetic Information Systems

(SISs), and proposed DSL and network reconstruction tools for addressing the gaps.

Deliverable D3.4 presented an evolved design, which was a result of further requirements that

had been identified by the pilot projects. Finally, this deliverable describes the implementation

status of three of the four DSLs in the evolved design.

We start by describing our DSLs for generating synthetic information systems in the context

of GSS simulations. They are:

¶ DSLH: DSL for determining the structure of the simulation needed to answer a high-

level question

¶ DSLD: DSL for data description and use

¶ DSLP: DSL for generating the synthetic population

¶ DSLA: DSL for generating an agent-based model. (DSLA is described in the deliverable

D3.8, and therefore skipped here to avoid duplication of information.)

These DSLs correspond to different stages of building an SIS for GSS.

An important aspect of GSS models is that the agents are related by multiple networks of

relationships: geographic proximity (neighbourhood), but also social and economic

connections (friendship, followers on social media, business relationships, etc.). Data about

the location of households has been part of census collections since the beginning, and is

available from the usual sources, e.g., Eurostat. Social data, on the other hand is much more

volatile, and, while the advent of social media has made it more available, its collection is

difficult and can lead to skewing results towards certain segments of the population. An

alternative is to develop indicators of the influence an agent can have on another's behaviour,

and to use the available data to estimate these indicators. Tools to achieve this "network

reconstruction" have also been developed within Task 3.4, using the results of DSLD and DSLP

and supporting the construction of ABMs with DSLA. These tools are presented in Section 5.5.

5.1 DSLH: DSL for determining the structure of the
simulation needed to answer a high-level
question

This subsection describes the current implementation of DSLH, the DSL for determining the

structure of the simulation needed to answer a high-level question. DSLH is part of the DSLs

implemented in Task 3.4 (Domain-specific languages for generating application-specific

synthetic populations for GSS simulations). It is presented in the deliverable D3.4 as follows:

DSLH formalises the high-level concepts of "avoidability", "vulnerability", "reachability",

associating to each of these the type of simulations needed to assess it.

 D3.6 Documentation and Software on Release 3 of the Portal

25

DSL structure:

• front-end: high-level "avoidability", "vulnerability", "reachability"

• back-end: lists of items needed to assemble the simulation, e.g.

– the SIS that can be used to determine possible trajectories

– a harm function, that measures damages, losses, etc. along a trajectory

– a vulnerability measure that fulfils the monotonicity condition

Further references: DSLH is described in the publications “Vulnerability modelling with

functional programming and dependent types” [5], “Sequential decision problems, dependent

types and generic solutions” [6], “Contributions to a computational theory of policy advice

and avoidability” [7].

Current status: The software described in these publications is implemented in the

dependently-typed programming language Idris (Brady 2017), and is available at online2. A

related implementation in the Agda3 programming language is available at

SeqDecProb_Agda4. A collection of application independent Idris libraries that grew out of the

SeqDecProbs framework is IdrisLibs5.

The intended use of this DSL is to guide the implementation of lower level software systems.

A first example application is outlined in the recent paper “The impact of uncertainty on

optimal emission policies” [8].

We have implemented several high-level concepts including reachability, viability and

avoidability. Each of these concepts has a computational formalisation in the CoeGSS-Project

GitHub repository DSL-Chalmers6 under the directory SequentialDecisionProblems7 (see, for

example, CoreTheory.lidr8 for viability and reachability and AvoidabilityTheory.lidr9 for

avoidability).

The structure of simulations needed for computations related to these concepts is given by

the unimplemented elements ("holes") in these files. They are automatically discovered and

highlighted by loading the files in an Idris-aware editor such as Emacs. Examples of

2 SeqDecProbs GitHub https://github.com/nicolabotta/SeqDecProbs
3 Agda http://wiki.portal.chalmers.se/agda
4 SeqDecProb_Agda https://github.com/patrikja/SeqDecProb_Agda
5 IdrisLibs https://gitlab.pik-potsdam.de/botta/IdrisLibs
6 DSL-Chalmers https://github.com/CoeGSS-Project/DSL-Chalmers
7 SequentialDecisionProblems https://gitlab.pik-
potsdam.de/botta/IdrisLibs/tree/master/SequentialDecisionProblems/
8 CoreTheory.lidr https://gitlab.pik-
potsdam.de/botta/IdrisLibs/tree/master/SequentialDecisionProblems/CoreTheory.lidr
9 AvoidabilityTheory.lidr https://gitlab.pik-
potsdam.de/botta/IdrisLibs/tree/master/SequentialDecisionProblems/AvoidabilityTheory.lid
r

https://github.com/CoeGSS-Project/DSL-Chalmers

 D3.6 Documentation and Software on Release 3 of the Portal

26

implementing viability and reachability are found in the files ViabilityDefaults.lidr10 and

ReachabilityDefaults.lidr11, respectively. For examples of applications, see the directory

SequentialDecisionProblems/applications12.

5.2 DSLD: DSL for data description and use
The first step towards building an SIS consists in obtaining and processing data. The data

describes (some of) the attributes of (some of) the agents that make up the synthetic

population. This data is, in general, in "raw" form, containing redundant or irrelevant

information. For example, the General Household Survey, 2006 from the UK Office for

National Statistics [9] contains a data file with 1541 columns, many of which are not relevant

for most applications, and some containing data that is derived from other columns. DSLD will

allow the users to describe the data required for the agents, describe the raw data, and

manipulate the data at a high-level, in terms of agent attributes rather than, e.g., table-

columns.

DSLD does not manipulate the data directly. Rather, it generates code that can be used to

prepare and test the data in the CoeGSS HPC environments.

The DSL has the following structure:

¶ Front-end The user specifies the characteristics and their types (possible values) and

relations between them (e.g., if age is < 10 years old, then education level is not

University)

¶ Back-end The result is a generated C code for preparing and testing the data

The DSL is architected as a quoted DSL (QDSL) in Haskell, based on the work presented in [10].

Like embedded DSLs (EDSLs), QDSLs allow for borrowing certain aspects of the host language

to use in the guest language, such as operator or conditional statements, which allows for fast

prototyping.

Unlike EDSLs, QDSL programs are not expressed directly using expressions of the host

language, but rather by using quotation, which provides a clear separation between the host

language and the DSL. In addition to that, the QDSL infrastructure provides a simple, but

powerful optimisation framework, which allows for using high-level constructs in the front-

end language, that will then be eliminated during the compilation process, yielding efficient

code. For example, all constructions related to sum types, which do not exist in the C

programming language, can be eliminated.

10 ViabilityDefaults.lidr https://gitlab.pik-
potsdam.de/botta/IdrisLibs/tree/master/SequentialDecisionProblems/ViabilityDefaults.lidr
11 ReachabilityDefaults.lidr https://gitlab.pik-
potsdam.de/botta/IdrisLibs/tree/master/SequentialDecisionProblems/ReachabilityDefaults.l
idr
12 SequentialDecisionProblems/applications https://gitlab.pik-
potsdam.de/botta/IdrisLibs/tree/master/SequentialDecisionProblems/applications

 D3.6 Documentation and Software on Release 3 of the Portal

27

To demonstrate how high-level features can be eliminated from the target code, let’s consider

this definition of a mapping of numeric values contained in a column of a data file into

descriptive labels.

eduMapQ :: Mapping

eduMapQ =

 [[6, 8, 9] | - > "NoData",

 [1] | - > "HigherEd",

 [2] | - > "OtherEd",

 [3] | - > "NoEd"]

 `noDefCase` ()

The column describes the education level of an individual. If a row contains number 6, 8 or 9

in the column, this means that no data on the education level was collected. Values 1, 2 and

3 denote different education levels. Finally, any other value is illegal, which is specified using

the noDefCase combinatory.

Having defined the mapping, we can define a property that will operate on the labels given to

the values in the column.

prop1 :: Maybe String - > Bool

prop1 (Just "NoData") = False

prop1 (Just "HigherEd") = True

prop1 (Just "OtherEd") = True

prop1 (Just "NoEd") = True

prop1 Nothing = False

The property checks whether there are no illegal values in the column by returning False for

the argument Nothing , which denotes an illegal value. Furthermore, the property also

checks whether there are no persons for which the data is missing, by returning False for

the argument Just "NoData" .

Using our framework, the mapping and the property can be combined and compiled down to

an efficient low-level C function, as explained in D3.4.

Thus, it is possible to use high-level code on the programmer’s side, and at the same time

generate efficient low-level code suitable for high-performance compilation.

Currently, a proof-of-concept implementation is available13, that allows defining basic

properties, and generating efficient C code for them. The project consists of Haskell code, in

addition to embedded skeleton C code. The implementation uses a custom fork QHaskell14

library as the optimisation backend, and the language-c-quote15 library for generating C code.

13 DSL-tests https://github.com/michalpalka/DSL-tests
14 QHaskell https://github.com/solrun/QHaskell
15 Objective-C quasiquoting library http://hackage.haskell.org/package/language-c-quote

 D3.6 Documentation and Software on Release 3 of the Portal

28

5.3 DSLP: DSL for generating the synthetic population
The data available will define, in most cases, only a small number of the agents necessary for

the SIS. The next step is therefore to build a synthetic population from which all agents can be

defined. This step requires the results of DSLD, namely the data description in terms of high-

level agent attributes, together with a micro-sample conforming to this description, and

statistical information about the population, usually in the form of marginal distributions of

attribute values. DSLP will then generate HPC-ready code for extending the micro-sample to

a synthetic population.

The DSL has the following structure:

¶ Front-end The user specifies the input data description using DSLD, and the procedure

for generating the synthetic population using a set of primitive operations, like IPF or

sampling

¶ Back-end The result is a generation procedure implemented in C

Currently, the following computational kernels are available:

¶ Efficient IPF kernel based on the PBLAS [9] API

¶ Haskell implementation created for validation purposes

Just as DSLD, also DSLP is implemented as a Haskell-based quoted DSL.

Below is an example program written in the DSL, which generates a basic synthetic population.

edu_table = marginalTable "edu_table.csv" ["isced97"]

pop_table = marginalTable "pop_table.csv" ["age", "sex"]

marginals = [edu_table, pop_table]

microSample = microSampleTable "microosample.csv"

 ["Sex", "age", "EDLEV10", "GREARN"]

mappingAge = ranges

 [[0, 15] | - > "Y_LT15",

 [16, 29] | - > "Y16 - 29",

 [30, 5 9] | - > "Y30 - 59",

 [60, 74] | - > "Y60 - 79",

 [75, 120] | - > "Y_GE75"

]

mainSynPop :: IO ()

mainSynPop =

 forM_ ["UKC11 ", "UKC12 ", "UKC13 ",

 "UKC14 ", "UKC21 "] $ \ region - >

 generatePop marginals microSample

 (mappings [("sex", "Se x", Id),

 ("age", "age", mappingAge),

 D3.6 Documentation and Software on Release 3 of the Portal

29

 ("isced97", "EDLEV10", Id)])

 ("out_" ++ removeSpace region ++ ".csv")

The program specifies the file names or identifiers of the data files containing the marginal

distributions, and the data file containing the micro sample. In addition to that, the program

needs to specify the relevant column names (as in general the data files might contain more

columns), mappings between column names in the marginals data files and the ones from the

micro-sample, and mappings of between values (and possibly ranges) from different files.

Finally, the program also specifies that the generation procedure will be performed for 5

regions (UKC11, UKC12, etc.), and will create a separate output file for each of them. Based

on this description, the generation algorithm will first perform binning of the micro sample

into the cross product of the marginals tables. Secondly, it will use the IPF method to fit the

resulting matrix of counts to the marginals according to maximum likelihood estimation.

Finally, it will perform sampling from the micro sample based on the estimated weights.

Even though the DSL allows for writing executable programs, many of the concepts appearing

in them, such as marginals, micro samples, mappings, etc., are familiar to domain experts,

who are not necessarily programmers.

Such compiled program will perform separate invocations of its computational kernel, which

uses the Python Numpy16 library and BLAS17 computational library under the hood, for every

region.

As this DSL is built on top of DSLD, it shares much the same framework as the other DSL.

16 NumPy http://www.numpy.org
17 BLAS http://www.netlib.org/blas/

 D3.6 Documentation and Software on Release 3 of the Portal

30

5.3.1 Integration with the Portal
Integration with the Portal is realised through Cloudify, which allows for submitting

computational jobs on clusters and HPC machines, as described in Deliverable 5.12. The

process of running an application involves 5 components, as shown in Figure 9.

Figure 9. Integration architecture

First, the portal invokes the DSL compilation on the compilation VM, which produces low-level

source code files and/or configuration files for the computational kernel, which are uploaded

to CKAN. Then, a fresh blueprint is uploaded and deployed through Cloudify, which triggers a

computational job on the HPC machine through the native job management system (Torque

or Slurm).

Finally, the computational job fetches the program and data files, compiles the program files,

and executes the resulting program on the fetched data files. The resulting output files are

uploaded back to CKAN.

In order to run a DSL job using the Portal, the user first develops the DSL program on their

local machine, and then generates a Cloudify blueprint, which represents the computational

job. The blueprint is then uploaded using the submission page shown in Figure 10. The

submission system is further described in Deliverable 5.4.

Portal

Compilation VM

Cloudify Manager

HPC machine

(Torque/Slurm)

CKAN

 D3.6 Documentation and Software on Release 3 of the Portal

31

Figure 10. Submission page for HPC jobs

5.4 Synthetic Population generation: performance
considerations

The performance of synthetic population generation has been evaluated on demographic data

from the following sources:

¶ Eurostat census data (2001)18

¶ Eurostat education attainment level data (2001)19

¶ UK General Household Survey (micro-sample, 2006) [11]

Using a program implemented in DSLP, the micro-sample of 22924 records was binned into

180 categories (a combination of 6 education levels and 30 demographic categories), and then

the IPF algorithm was used to fit the resulting counts to marginal data coming from the

Eurostat data sets for 5 UK regions. The fitted counts are then used as weights for sampling

agents from the respective buckets. Figure 11Błąd! Nie można odnaleźć źródła odwołania.

shows the performance of the generation procedure when 10 agents are generated for each

of the 5 regions, and when 10000 agents are generated for each of them.

18 Eurostat census data
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=cens_01rapop&lang=en
19 Eurostat education attainment level data
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=cens_01reisco&lang=en

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=cens_01rapop&lang=en
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=cens_01reisco&lang=en

 D3.6 Documentation and Software on Release 3 of the Portal

32

Figure 11. Performance of synthetic population generation (in seconds, median of 5 runs)

As visible in the Figure, sampling of 10000 agents takes about 25% of the run time, while the

rest is taken by reading the input files and the fitting procedure. Furthermore, we have

determined that I/O takes the majority of the run time, and thus in the current

implementation the performance of the procedure is I/O-bound.

0

2

4

6

8

10

12

14

16

10 agents 10000 agents

 D3.6 Documentation and Software on Release 3 of the Portal

33

6 Network reconstruction tool
The dynamic of an ABM relies on the way agents are connected, i.e. in the way they influence

each other through their behaviours. Representing correctly the network of interactions has

thus a capital role in the ABM definition. Luckily, even if friendship relations are hard to

measure (mostly they are inferred from different measures [12]), some properties seem to be

ubiquitous. In particular, a hierarchical community structure is observed in all networks [12].

In CoeGSS we tackle the problem of the influence network by defining a weighted network of

similarity from the attributes defining an agent and damping it through a function of the

distance between the agents. As already described in the previous sections, an agent is

generated by the synthetic population tool and it is equipped with several attributes (age, sex,

education…). The target of the Similarity Network for Synthetic Population (SN4SP) tool is to

derive an influence network from the attributes of the agents of a synthetic population.

The problem is threefold. First, we have to decide what is a similarity, secondly how to handle

different kinds of data (agent attributes may be categorical, numerical or geographical) and

finally we need to be sure to avoid external bias to our tool. Lin Similarity [12] successfully

solves all these issues. In our realisation, we even explicitly consider possible dependencies

among attributes, an issue that is often present in real data but rarely considered in the

applications.

In particular, this last point, which is left implicit in the original definition of Lin, was addressed

in the last months. Moreover, we tested the results even on datasets different from the ones

of interest for CoeGSS and we obtained reliable results.

In order to apply this methodology to the description of actual influence relations, we

introduced a damping factor depending on the distance between agents. Several distance

dampings are considered: in the literature, for instance, we can find different power laws,

depending on the medium implemented to infer the friendship relations.

6.1 Parallelization efforts
Important modifications were employed with respect to the previous versions. Indeed, the

calculation times are affected by the dependencies present among the different attributes. In

order to reduce calculation times, we sample the whole dataset and infer the value of the

similarity from the results obtained on the sample.

The algorithm of SN4SP is organised in four steps. First, the code pre-processes data to feed

the main algorithm in the correct way. Then a sample is realised; the user can decide the

dimension of the sample. Thirdly, the distance between agents is calculated: if it is too much,

the damping factor is too small to contribute significatively to the similarity and the weight

value is set to zero and the calculation of the Lin similarity between the agents is neglected.

However, if the distance between the agents is small enough for providing a considerable

 D3.6 Documentation and Software on Release 3 of the Portal

34

contribution, we calculate the Lin similarity on the sample and assign it to the pair of nodes

under consideration.

Actually, the only information needed is the synthetic population and the kind of attributes

(categorical, numerical, and geographical). In principle, the user may decide that some

attributes are redundant or not necessary for the actual calculations: this choice can be

performed in the pre-processing step.

The algorithm has just two parameters, which are the distance at which the weight of the link

is reduced by a factor ½ and the damping function. The dimension of the sample represents

an additional parameter, related to the precision of the weight in the influence network.

The code is implemented in python, making use of the mpi4py and h5py packages, i.e. python

wrappers respectively for MPI (Message Passing Interface) and the (parallelised) management

of HDF5 files. The numerical steps use the Dask python package, which is optimised on

clusters. The actual version is running on the HazelHen machine.

The output of the similarity network algorithm is saved in the original input HDF5 file format.

An extra HDF5 dataset contains the global similarity. Actually, the results are saved in a brand

new HDF5 file format with the structure defined above.

Figure 12. Scalability of Network Reconstruction tool - calculation time vs. number of agents

In the plot, the cyan line represents the calculation time, when a training set of the 10% of the

whole population is used, instead of the entire population (blue dashed line). As it is possible

to see, introducing the sample drastically reduces the calculation times.

 D3.6 Documentation and Software on Release 3 of the Portal

35

6.2 Network reconstruction tool Web GUI
The portal enables launching applications on the remote HPC systems with the help of Cloudify

[13]. For each application launched remotely, Cloudify requires configuration files called

blueprints. Blueprint files are YAML files written in accordance with the OASIS TOSCA standard

[14]. They describe the execution plans for the lifecycle of the application including installing,

starting, terminating, orchestrating, and monitoring steps.

In our case, the network reconstruction algorithm is implemented as a Python script. The

blueprint for this script makes use of the Cloudify HPC plugin presented in D5.11 [15].

This blueprint defines the inputs that specify arguments of the script and the inputs that

specify details of the application lifecycle. The first group includes the following inputs:

- “synpop_path” which contains the path to the input HDF5 file with the synthetic population.

It does not have a default value and, thus, must be specified in inputs when the blueprint is

deployed.

- “synnet_path” which contains the name to the output HDF5 file with the synthesized

network. By default, we use the name of the synthetic population input file suffixed with

“_network”.

- “half_similarity” which defines half-similarity scale. The default value is 5000 (the value is

intended to be in meters).

- “damping” which defines the damping function. If the damping value is 0, we use exponential

damping, otherwise we use a power law with user-defined exponent. By default, it is set to 0

(i.e. exponential damping).

- “stripe_size” which represents percentage of the sample for the similarity calculation. The

default value is 0.1.

The second group contains the following inputs:

- “hpc_configuration” which defines workload manager information and credentials of the

remote HPC system to run the script on. This parameter does not have a default value and,

thus, must be specified in the inputs when the blueprint is deployed.

- “num_tasks” which defines the number of MPI processes.

- “monitor_entrypoint” which specifies IP of the external task monitoring server. By default,

we use the simple Python monitor implemented directly into the Cloudify HPC plugin.

- “python_module” which defines the name of the module that must be loaded on the target

HPC to get access to the Python 2.7 environment with libraries that the network

reconstruction script depends on. In particular, this environment must include mpi4py>=2.0,

H5py>=2.8, DateTime>=4.2, psutil>=5.4.7, matplotlib>=2.2.3, numpy>=1.11.3 scipy>=0.19,

pandas>=0.23.4, geopandas>=0.4. By default, we assume that the name of the module is

“tools/python/coegss/2.7”.

 D3.6 Documentation and Software on Release 3 of the Portal

36

- “job_prefix” which contains job name prefix on HPC. Default prefix is "coegss".

In order to make things run smoothly on different HPC clusters, we accompany the blueprint

file with job bootstrapping and reversion bash scripts. The bootstrapping script creates batch

scripts for the workload manager (TORQUE or SLURM) and allocates workspace for the

network reconstruction output file, if the latter is supported by the target HPC cluster. Note

that workspace allocation helps to avoid IO problems since the output files require ὕὲ disk

space and may easily overcome limits for the user’s home folder. The reversion script takes

care of uploading output files to CKAN, releases the workspace, and removes the batch script

for the workload manager.

In order to run the application with the Cloudify manager, the user must do the following

steps: upload the blueprint to the manager, deploy this blueprint, launch "install" and

"job_run” executions. Since the network reconstruction script is a part of the CoeGSS

toolchain, its blueprint is already uploaded to our Cloudify manager VMs manually. So, in

contrast to the other steps, the blueprint-uploading step does not require interaction with the

portal. For the remaining three steps, the portal interacts with the Cloudify managers via the

Cloudify REST client API [16]. In particular, in the blueprint deployment step, we convey

blueprint inputs from the portal Web GUI to the Cloudify manager and the Cloudify manager

copies application bootstrapping and reversion scripts to the target HPC cluster. After the

blueprint deployment, we run the “install” execution, which launches bootstrapping scripts

with the blueprint inputs as arguments. As a result, we obtain a batch script for the workload

manager. Finally, we put this batch script into the workload manager queue via calling the

“job_run” execution in the Cloudify manager. As soon as the parallel job is finished and the

portal gets informed about it by the Cloudify manager, the portal calls the “uninstall”

execution, which launches the job reversion script. Afterwards, the portal deletes the

blueprint deployment.

 D3.6 Documentation and Software on Release 3 of the Portal

37

7 Representing Uncertainty in Modelling and
Computation

In the following section, we describe the packages and codes that have been developed in

Task 3.2 during the lifetime of the project. All codes are contained in the CoeGSS code

repository on GitHub.

7.1 Description of Software Packages
Intervals: is a Haskell package that contains the data types interval and interval lists,

arithmetic operations add, sub, mul, divsimple, div to be performed on these data types. The

implementation follows the IEEE1788 standard for interval mathematics. To ensure that the

resulting intervals are always safe, we worked with the standard Haskell rounding mode

(rounding to the nearest) and perform the “outwards” rounding explicitly as described in [17].

With simpleDiv as fourth operation, the arithmetics is a closed calculus on intervals that

throws an exception in case that the divisor interval contains zero.

With division operation, div as the fourth operation, the calculus has lists of intervals as basic

data type. If one tries to divide by an interval containing zero, then the result is a pair of

intervals. Dividing a singleton list of intervals by the singleton list [[0,0]] leads to the empty list

as a result.

The IPF procedure that is used within the project for the creation of synthetic populations was

validated by Task 3.2. The Haskell package IPF-Ground-One contains all necessary modules

for it. As a proof of concept for our approach, it shows how to use the interval library to

validate an arbitrary numerical procedure. The example was interesting not only because the

algorithm is one that is directly used in the project but also because it shows how the method

is a successful tool to evaluate the precision without having to perform a thorough numerical

analysis. IPF is an iterative procedure that in theory is proven to converge. While converging

is a notion that makes sense only for real numbers, when working with floating point numbers,

the best thing one can hope for is that a fixed point is reached after several iterations. Our

interval extension of two dimensional and n-dimensional (n<=7) IPF showed that after 6-8

iterations the changes in the result are rather small. With more iterations, the rounding errors

get an increasing influence on the result. The produced matrices contain intervals with

increasing size, i.e. the imprecision or uncertainty of the result is increasing. The approach for

validation of a numerical procedure at the example of the IPF algorithm was presented in a

talk, the 2018 Workshop on Numerical Programming in Functional Languages.

To generate random test samples for input matrices we implemented a particular module

SampleGen and added it to the IPF-GroundOne package. After choosing a range for the values

of the marginals and the matrix entries, inputs follow an equal distribution. Also, a graphics

module IPFGraphResults was created to visualise the behaviour using LaTeX TikZ.

 D3.6 Documentation and Software on Release 3 of the Portal

38

As an additional tool to validate numerical procedures, we implemented an interval version

of the Newton method for finding zeros and the midpoint method to find extrema of a given

function (modules Newton and MidPointMethod) described in [18]. They expect an interval

extension of said function and its first derivative as an input, but the modules Polynomial and

Expression may be used to create these functions for certain special cases. Not all interval

realisations of the functions used in Expression, however are (safe) interval extensions. In

their current state, they were only used for testing purposes of the algorithms. Both methods

yield as a result an interval or a list of intervals that contains the (real valued) “solution”, if

certain conditions are met: the input has to fulfil the input condition (for example for Newton

the derivative is not allowed to be zero in the input interval), there must exist a solution for

the considered input and the input functions have to be proper interval extensions. Calling

the algorithms with a function from Expression is not "safe" in this sense, although it should

still be relatively accurate. All codes are contained in the package Newton-Algorithm-and-

Midpoint-Method-for-Intervals.

In the very beginning of the project as preliminary work for the optimisation procedures we

expected to validate, we implemented an Idris module for the divide and conquer algorithm

scheme based on [19] that was later on translated into Agda, which turned out to be the

language that better fits the purpose. Divide and Conquer is a well-known algorithm scheme

that is very suitable to synthesise provably correct algorithms. Our Agda implementation of it

is thus not only a template for the implementation of a certain instance of it (like merge sort

or branch and bound search) but guarantees also that if the user instantiates its ingredients

(input and output conditions, split and compose functions and a solve-directly function on

primitives) and instantiates the axioms, the resulting implementation contains its correctness

proof. The instantiation is done by filling in the unimplemented elements ("holes") in these

files. They are automatically discovered and highlighted by loading the files in an Agda-aware

editor such as Emacs. Examples of implementing a Divide and Conquer algorithm are found in

the modules Mergesort and Quicksort contained in the Divide-and-Conquer-in-Agda package

[20].

The method can be used to design and implement for example optimisation algorithms, which

are important for model adaptation and parameter estimation in GSS applications.

https://github.com/NAMEhzj/Newton-Algorithm-and-Midpoint-Method-for-Intervals
https://github.com/NAMEhzj/Newton-Algorithm-and-Midpoint-Method-for-Intervals
https://github.com/NAMEhzj/Divide-and-Conquer-in-Agda

 D3.6 Documentation and Software on Release 3 of the Portal

39

8 Hardware and software co-design
In this chapter, we describe our recent findings related to software-software and hardware-

software co-design. In particular, as a part of software-software co-design discussion, in

section 8.1, we present benchmarking results for the HDF5 extension library [9]. Section 8.2

addresses aspects related to hardware-software co-design. In this section, we formulate

general recommendations for hardware providers that might help to build clusters targeting

GSS users. Those recommendations are based on the extensive benchmarking of eight HPC

applications coming from various domains relevant for GSS (such as ABMs in social sciences,

simulation of pollutions, etc.) on nine different recently emerged architectures. The results of

benchmarking were previously reported in the deliverables D5.7 [21] and D5.8 [22].

8.1 Performance of the HDF5 extension library
In D3.4, we presented the HFD5 file structure, which can be used by different software

components of the CoeGSS toolchain and an HDF5 extension library that facilitates

manipulations with HFD5 files that follow this structure. In order to assess performance of this

HDF5 extension library, we prepared a benchmark that implements Axelrod's model of

dissemination of culture with the help of the Amos framework. This model was proposed in

1996 by R. Axelrod [23] and immediately gained broad popularity among social scientists.

Nowadays, it is considered as one of the most well studied ABMs – both theoretically and

empirically [24], – which motivated us to choose Axelrod's model for benchmarking.

The model defines agents and rules for their interactions as follows. Agents model individuals

in a culture dissemination process. Each agent is endowed with Ὂ integer attributes called

cultural traits, which are meant to model different beliefs, opinions, and other properties of

agents. The model allows only a limited number of values for each cultural trait Ὢ

πȟρȟȣȟή ρ. In the dynamic step, each agent randomly selects one neighbour and the

agent interacts with the neighbour with some probability proportional to the overlaps

between the agent-neighbour pairs (the overlap is computed as a number of equal features).

The interaction consists in assigning to one of the agent’s trait the value of its neighbour’s

trait. In other words, these rules make interacting agents more similar, but the interaction

happens more often if agents already share many traits and it never happens if agents have

no trait in common. This suggests that Axelrod's interaction rules allow to model two cultural

mechanisms – social influence and homophily. In order to fit Axelrod’s model to the graph-

based ABMS framework discussed in D3.3, we slightly modified Axelrod’s notion of

neighbours. In our implementation, we consider as neighbours all agents located at the same

spatial site, as well as the agents that have direct links in the social graphs.

The benchmark was performed on the Hazelhen cluster at HLRS. Hazelhen is composed of

CRAY XC40 nodes and has peak performance 7.4 Pflops. The cluster includes 41 Cray cascade

cabinets with in total 7712 dual socket compute nodes. Each node is equipped with 2 12-core

Intel Haswell E5-2680v3 CPUs and 128GB of DDR4 RAM. The type of interconnect is Cray Aries.

 D3.6 Documentation and Software on Release 3 of the Portal

40

It uses Lustre storage and operates with the Cray Linux Environment. We compiled all

components – Amos, HDF5 extension library, and codes of Axelrod’s model – with GCC 6.4.

Then the HDF5 extension library was linked against HDF5v1.10.2.

Figure 13. Scalability of Axelrod’s model implemented with the Amos framework and the
CoeGSS HDF5 extension library on Hazelhen cluster

In our benchmarks, we used 2 networks from – Brighkight and Gowala – for representing long-

range interactions. The number of agents was artificially adjusted to the number of vertices in

the networks. In order to create sites for their allocation, we used a 240x290 pixel raster with

a population density heat map for the Faroe islands from Eurostat. We initialized agents with

three cultural features each taking random values between 0 and 9.

Figure 13 summarizes results of the benchmark. Its subplots contain line chart with confidence

intervals for measured elapsed times of data input and 100 iterations of Axelrod’s interaction

iterations. In these plots, we compare performance of the HDF5 extension library against

 D3.6 Documentation and Software on Release 3 of the Portal

41

embarrassingly parallel CSV input on both social networks. By embarrassingly parallel CSV

input, we mean a naïve embarrassingly parallel implementation of the CSV reader for Amos

which assumes that the user split the input data and prepared CSV files for each MPI process

separately. For both networks, the scalability of the embarassingly parallel CSV input is much

better than the scalability of the HDF5 extension library. After reaching the scalability limit,

elapsed time of the HDF5 extension library increases dramatically. The latter makes us believe

that performance of the HDF5 extension library can be significantly improved if it were

implemented in a way that a relatively small number of the processes reads the HDF5 files and

distributes the data between processes.

8.2 Analysis of CoeGSS benchmarks from the
hardware/software co-design perspective

In the previous deliverables, we covered many aspects of software/software co-design while

our hardware/software co-design findings were not covered at an appropriate depth. The

following text aims to reduce this imbalance. During the project lifetime, we benchmarked a

number of diverse HPC compliant GSS related applications on various recently released HPC

platforms. In this section, we do not present our benchmarking results, but rather draw

recommendations for the HPC hardware vendors based on those results. We refer the readers

interested in the benchmarking results to our deliverables D5.7 and D5.8.

Functionally, the benchmarked applications can be categorized into two groups: social

simulation software and large-scale CFD (Computational Fluid Dynamics) applications. From

the perspective of programming languages, our benchmarks covered applications written in

C++ and Python, which are the most popular programming languages among GSS experts who

use HPC.

The group of benchmarked social simulation software covers applications for pre-processing

and simulation of agent-based models. We considered two typical pre-processing tasks:

converting shape files to rasters and producing synthetic populations. The benchmarks have

shown that conversion from shape files to rasters is very demanding in terms of RAM while

I/O and CPU requirements are rather low. In order to study computational requirements to

applications that generate synthetic populations, we implemented a simple parallel version of

the celebrated iterative proportional fitting (IPF) method. Our implementation heavily uses

dense linear algebra kernels provided by a highly optimised ScaLAPACK library. Our

benchmarks demonstrate high performance of IPF on different architectures. Neither RAM,

nor I/O of modern architectures are limiting factors for IPF performance. Along with ABMS

pre-processing applications, we benchmarked a simple agent-based model of diffusion with

the help of distributed ABMS frameworks following two different parallelization strategies for

ABMs with raster inputs. The first framework – Pandora – is written in C++ and parallelizes the

simulation process via splitting of rasters on even pieces and distributing them between MPI

processes, while the second framework – ABM4py – is a Python code, which implements the

graph-based parallelization approach discussed in D3.3. Despite strong difference in

 D3.6 Documentation and Software on Release 3 of the Portal

42

parallelization strategies, in both cases, we observe the same pattern: ABMS applications

produce a big amount of output which has a strong negative impact on application

performance. As a consequence, according to our toy ABMs, being I/O bound, current ABMS

frameworks for HPC have moderate requirements to CPU performance. Nevertheless, we

must emphasize that the results can look differently for complex models with sophisticated

agent activities and models which can be reduced to iterations with sparse-matrix dense-

vector operations, thus, our benchmarks for ABMS frameworks are not very illuminative and

must be extended with more sophisticated models to draw stronger conclusions. But

discussion of the new ABMS models for benchmarking goes beyond the scope of this text.

Table 2 shortly summarizes information about scalability of the benchmarked social

simulation software and hardware bottlenecks.

 preprocessing ABMS (with raster input)

 restering IPF Pandora ABM4py

 Europe World 128x128

B
o

tt
le

n
ec

ks

CPU +

RAM +

IO output output output

Network N.A.

 Scalability* serial ρτππ ρςψ χππ ρςψ

* maximum number of utilized cores of Xeon E5 2682 v4 cluster that help to reduce a total elapsed time

Table 2. Bottlenecks in the hardware and scalability for the application from social
simulation software stack according to the CoeGSS benchmarks

The group of benchmarked CFD applications includes large scale tools that simulate GSS-

related scenarios like natural disasters (hurricanes, earthquakes), spread of air pollutions, and

weather prediction. More specifically, we selected the following open-source CFD codes for

our benchmarks:

¶ HRWF – a parallel implementation of the hurricane weather research and forecasting

(HWRF) model [21];

¶ OpenSWPC – an integrated parallel simulation code for modelling seismic wave

propagation in 3D heterogeneous viscoelastic media [22];

¶ CMAQ – a community multiscale air quality modelling system, which combines CFD

codes for conducting large scale air quality model simulations [25];

¶ CM1 – a parallel implementation of the three-dimensional, time-dependent, non-

hydrostatic numerical model for studies of small-scale processes in the Earth’s

atmosphere, such as thunderstorms, etc. [24]

 D3.6 Documentation and Software on Release 3 of the Portal

43

As expected, our benchmarks confirm that CFD applications are in general CPU-bound in

contrast to the social simulation software. Nevertheless, we observed that at some

architectures’ memory was also a bottleneck for some choices of the number of MPI

processes. In particular, CMAQ (Community Multiscale Air Quality) and CM1 applications

produce a lot of outputs, which imposed additional performance constraints on architectures

with poor I/O speed. In addition, we noticed that OpenSWPC (Open-source Seismic Wave

Propagation Code) is memory bound for the small number of MPI processes. We outlined

relevant information about scalability of the benchmarked CFD applications and hardware

bottlenecks in Table 3.

 HRWF OpenSWPC CMAQ/CCTM CM1

 (hurricanes) (seismology) (pollutions) (weather)

B
o

tt
le

n
ec

ks

CPU + + + +

RAM +

IO input output output

Network

 Scalability* ρςψ ρςψ ρςψ ρςψ

* maximum number of utilized cores of Xeon E5 2682 v4 cluster that help to reduce a total elapsed time

Table 3. Bottlenecks in the hardware and scalability for the application from large-scale CFD

applications according to the CoeGSS benchmarks

As Tables 2-3 illustrate, most of the distributed GSS applications are memory bound. Even

large-scale CFD codes can be bound by I/O and RAM under special circumstances. It allows us

to conclude that the fast memory is an essential requirement to HPC clusters for GSS

applications whereas high CPU’s clock frequency plays a less important role. Moreover, since

many state-of-the-art GSS applications deal with large input and output files, we believe that

GSS software developers should invest more time into designing file-avoiding applications.

Our scalability tests show that hyperthreading provides little performance improvements for

most of the GSS applications. Therefore, it makes little sense to invest money in expensive

massively multithreaded chips (like Power8) for GSS users. We also recommend avoiding

clusters with GPU accelerated nodes since only few popular GSS applications benefit from

GPUs. In particular, among widely used general-purpose ABMS frameworks and problem-

specific ABMS codes for HPCs, only the FLAME-HPC framework utilizes GPUs. Weak use of

GPUs is also partially related to the fact that most social science applications are memory

bound. Being more specific, among the architectures used in benchmarking, we recommend

to build clusters upon ARM Hi1616 if energy efficiency is a crucial requirement, or upon Intel®

Xeon® Gold 6140 if performance is a first priority while relatively high operating expense and

capital expenditure are not an issue.

 D3.6 Documentation and Software on Release 3 of the Portal

44

According to our benchmarks, the scalability of GSS applications is rather diverse. All

applications from the social simulation software stack demonstrate poor scalability with one

notable exception – the IPF implementation. Moreover, even though our benchmarks do not

demonstrate this explicitly, it is also known that social simulation software scales worse than

the large-scale CFD codes. On the other hand, due to stochastic nature of ABMs, a typical

social simulation workflow assumes many simultaneous simulation runs, whereas the fitting

step in reconstruction of a synthetic population should normally be performed only once for

a given dataset. Therefore, the optimal number of nodes for the state-of-the-art should be

defined by scalability of the synthetic population and CFD codes (if the latter are of interest

for the target GSS audience). We can always bypass the gap in scalability of the synthetic

population and ABMS codes and reach full utilization of clusters by making several

simultaneous simulation runs (and treating simulation results in a file-avoiding way).

Unfortunately, our results do not allow to draw conclusions about node interconnects since

most of the benchmarks were done on the testbeds with only one or two nodes.

 D3.6 Documentation and Software on Release 3 of the Portal

45

9 Portal – HPC interoperability
As a way to facilitate the execution of simulations, the CoeGSS Portal includes a new GUI

connected to an Orchestrator, so researchers do not need to take care of the deployment and

usage of HPC resources. The complexity of dealing with these resources is hidden, so they can

focus on the configuration and execution of the simulations. They will not need to deal with

the workload managers APIs, the queues and the continuous execution of complex scripts.

9.1 Running Simulations Through the Portal
In the previous release of the CoeGSS Portal, the HPC Orchestrator component was introduced

as a component, which receives a workflow specification (in a language called TOSCA [14]) and

is able to send jobs to the corresponding HPC centres. Such Orchestrator is based on Cloudify,

with specific plug-ins for enabling the usage of Slurm and Torque, as a way to send jobs to

large HPC systems.

The usage of such orchestrator enables the possibility to use TOSCA for implementing

simulation workflows in the context of CoeGSS. It is possible to specify a specification for

running stand-alone tools (e.g. the synthetic population generation tool), so single runs of the

tool with different configurations can be made. On the other hand, it is possible to implement

the complete CoeGSS workflow by including all the necessary tasks in the TOSCA file, with the

corresponding scripts.

When pilots want to run a complete simulation, they specify all the phases of the workflow

within TOSCA, specifying the jobs to run and their characteristics (as explained in the following

subsection). This means that it will include jobs for data pre-processing and movement (if

necessary), jobs for population generation and network reconstruction, jobs for launching

several simulations and jobs for the post-processing.

It is necessary that developers prepare all the TOSCA files and that they include all the scripts

that will be executed, according to the TOSCA specification. Inputs and outputs are already

specified for each task, so it is possible to parametrize the simulation. Finally, everything is

packaged in a tar file that can be processed through the CoeGSS Portal.

The way to proceed for running a simulation by a user consists in the following steps:

1. Upload the data to a repository enabled by CoeGSS and register such input data in

CKAN (accessible through the CoeGSS Portal);

2. Open the TOSCA file and change any input parameter as required (certain users may

want to change the number of nodes to use, the number of parallel simulations to run,

etc.), saving any change done in the simulation package file;

3. Enter the jobs submission interface in the CoeGSS Portal;

4. Click the ‘Choose File’ button and select the package to execute by using the Portal

interface (that is, the application package with the blueprint and scripts, as given by

the developers);

 D3.6 Documentation and Software on Release 3 of the Portal

46

5. Click the second ‘Choose File’ button and select the file with the input parameters for

the selected applications;

6. Click on ‘Run’.

The CoEGSS Portal will retrieve the specification and it will communicate with the Orchestrator

to launch the simulation workflow, retrieving the data, moving it adequately and executing all

the tools included in such workflow. At the end of the process, the resulting data will be stored

as specified in the TOSCA and/or input files and the user will be notified.

9.2 Specification of the Simulations with TOSCA
TOSCA is a standard specification for workflows, which facilitates the deployment of

applications in Cloud environments. It is considered a DSL and, since it was not designed for

supporting HPC environments, some changes were proposed in [26]. These changes, basically,

were oriented to support the execution of mathematical simulations in a hybrid environment

where HPC and Cloud resources are available. CoEGSS has taken advantage of such extensions,

in order to create the simulation workflows to be implemented in the project. The definitions

of such workflows are considered blueprints in the context of Cloudify (which is the base

software of the Orchestrator component).

The extensions of the DSL specify two main types that must be used in the workflow

specification: Compute and Job.

Each Compute defines an HPC centre that is providing computational resources through the

Orchestrator. It is used for specifying the entry point (URL, port, etc.), the workload manager

used (since it will be necessary to use one connector or another), user’s credentials for

accessing the resources and other parameters for configuring the monitoring, the working

directory and additional configuration.

In the case of CoEGSS, we have defined Compute elements for PSNC and HLRS infrastructures.

This is done after the block which defines the input variables of the workflow.

Figure 14. Definition of the Compute element for the HLRS infrastructure

Each Job represents a task to be carried out in the workflow. It has three main phases:

¶ Bootstrap: it represents tasks to be performed before running the task (e.g. move

some data);

 D3.6 Documentation and Software on Release 3 of the Portal

47

¶ Execution: it runs a concrete application or task, as defined in the workflow;

¶ Revert: it carries out tasks that must be done after the main task has finished (i.e. do

some action on the resulting data, move the output data to certain location, etc.).

Usually, in the bootstrap and revert part, developers just indicate the location of the script to

be executed, so the script may perform several activities. In the case of the main action, it is

possible to determine the inputs and outputs involved, the amount of resources to use (i.e.

number of nodes), modules that must be loaded for running the task, maximum time for

running the task, whether several tasks will be run in the same node (related to scalability) or

even the type of task (batch or normal job).

Figure 15. Definition of a single_job

It is important to highlight that the definition of inputs and outputs follow a simple structure,

with a description, the type of input (integer, string, float…) and a default value (if we want to

set one).

Figure 16. Example of input variable

When running the workflow, all the inputs must be included in a separate file, which will be

assigned to the workflow with the corresponding command. Such file will just include pairs of

values (name_of_input_variable: value_of_variable).

 D3.6 Documentation and Software on Release 3 of the Portal

48

10 Summary
In the deliverable, we presented the status of tools and methods in development that were

implemented in the final release of the portal. It also presents other achievements of WP3

tasks like increasing software execution reliability, remote visualization using the COVISE

system. Moreover, we discussed different implementations of DSLs for different approaches

in the project. Next, we presented achievements in parallelization of the network

reconstruction tool as well as packages and codes for representing uncertainty in modelling.

In the co-design section, we focused on software-software and hardware-software co-design

in two aspects: performance of the HDF5 extension library and benchmarking HPC compliant

GSS related applications. At the end we presented how Portal-HPC interaction is organized in

respect of launching simulations from the portal and how submitted tasks are described in a

TOSCA specification.

All presented tools, methods and solutions implemented for the CoeGSS project are very

useful in Global Systems Science processing in general and can be adapted for other use cases.

The results presented like software functionality provided and scores achieved in

parallelization of tools are satisfactory and provide much substantial information for CoeGSS

potential users and similar system developers.

 D3.6 Documentation and Software on Release 3 of the Portal

49

References

[1] “DMTCP project home page,” [Online]. Available: http://dmtcp.sourceforge.net/.

[2] “Dakota,” [Online]. Available: https://dakota.sandia.gov/.

[3] “Cloudify,” [Online]. Available: https://cloudify.co/.

[4] “R package Shiny,” [Online]. Available: https://shiny.rstudio.com/.

[5] C. Ionescu, “Vulnerability Modelling with Functional Programming and Dependent

Types,” Mathematical Structures in Computer Science 26 (01). Cambridge University

Press: 114ς28. , no. doi:10.1017/S0960129514000139., 2016.

[6] N. B. e. al., “Sequential decision problems, dependent types and generic solutions,”

2017.

[7] N. Botta, P. Jansson and C. Ionescu, “Contributions to a Computational Theory of Policy

Advice and Avoidability,” no. doi:10.1017/S0956796817000156, 2017.

[8] N. Botta, P. Jansson and C. Ionescu, “The Impact of Uncertainty on Optimal Emission

Policies,” Earth System Dynamics 9 (2): 525ς42., no. doi:10.5194/esd-9-525-2018.,

2018.

[9] Office for National Statistics. Social and Vital Statistics Division, “General Household

Survey, 2006, 3rd Edition,” UK Data Service, 2009.

[10] S. Najd, S. Lindley, J. Svenningsson and P. Wadler, “Everything old is new again: Quoted

Domain Specific Languages,” in Partial Evaluation and Program Manipulation 2016, St.

Petersburg, 2016.

[11] “General Household Survey, 2006 [computer file]. 3rd Edition. Colchester, Essex: UK

Data Archive [distributor],” February 2009, no. SN: 5804, February 2009.

[12] D. Lin, “An Information-Theoretic Definition of Similarity,” in ICML '98 Proceedings of

the Fifteenth International Conference on Machine Learning, 1998.

[13] “Cloudify documentation,” [Online]. Available: https://docs.cloudify.co/4.4.0/.

[14] “Topology and Orchestration Specification for Cloud Applications Version 1.0 OASIS

Standard, 2013, 114 p.,” [Online]. Available: http://docs.oasis-

open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf.

[15] F. Nieto, “D5.11 - Second Portal Release.”.

 D3.6 Documentation and Software on Release 3 of the Portal

50

[16] “`cloudify-rest-client`’s documentation.,” [Online]. Available: https://cloudify-rest-

client.readthedocs.io/en/3.2/.

[17] S. M. Rump, T. Ogita, Y. Morikura and S. Oishi, “Interval arithmetic with fixed rounding

mode,” Nonlinear Theory and Its Applications, IEICE vol. 7(3), no. doi

10.1587/nolta.7.362., pp. pp 362-373, 2016.

[18] W. Tucker, “Validated Numerics: A Short Introduction to Rigorous Computations,”

Princeton University Press, 2011.

[19] D. Smith, “The design of divide and conquer algorithms.,” Science of Computer

Programming. 5., no. 10.1016/0167-6423(85)90003-6., pp. 37-58., 1985.

[20] E. Richter and M. Richter, “Error analysis almost for free,” in Workshop Numerical

Programming in Functional Languages, 2018.

[21] M. K. Biswas and e. al., “Hurricane Weather Research and Forecasting (HWRF) Model.

Scientific Documentation,” NCAR Technical Note NCAR/TN-544+STR, p. 111 pp, 2018.

[22] T. Maeda, S. Takemura and T. Furumura, “OpenSWPC: an open-source integrated

parallel simulation code for modeling seismic wave propagation in 3D heterogeneous

viscoelastic media,” Earth, Planets and Space, 2017.

[23] R. Axelrod, “The Dissemination of Culture,” Journal of Conflict Resolution, 1997.

[24] G. H. Bryan, “The governing equations for CM1. Version 4,” National Center for

Atmospheric Research, Boulder, Colorado, p. 15p.

[25] K. W. Appel and e. al., “Description and evaluation of the Community Multiscale Air

Quality (CMAQ) modeling system version 5.1,” Geosci. Model Dev., 10,, pp. p. 1703-

1732, 2017.

[26] J. Carnero and F. J. Nieto, “Running Simulations in HPC and Cloud Resources by

Implementing Enhanced TOSCA Workflows,” in HPCS'18, Orleans, 2018.

[27] E. Brady, “Type-Driven Development with Idris,” Manning Publications Company.,

2017.

[28] “Office for National Statistics. Social and Vital Statistics Division 2009,” [Online].

Available: http://www.netlib.org/utk/papers/scalapack/node9.html.

[29] C. Ionescu, “Vulnerability modelling with functional programming and dependent

types,” 2016.

 D3.6 Documentation and Software on Release 3 of the Portal

51

[30] N. Botta, P. Jansson, C. Ionescu, D. R. Christiansen and E. Brady, “Sequential Decision

Problems, Dependent Types and Generic Solutions.,” Logical Methods in Computer

Science 13 (1)., no. doi:10.23638/LMCS-13(1:7)2017, 2017.

[31] N. Botta, P. Jansson and C. Ionescu, “The impact of uncertainty on optimal emission

policies,” 2018.

[32] N. Botta, P. Jansson and C. Ionescu, “Contributions to a computational theory of policy

advice and avoidability,” 2017.

 D3.6 Documentation and Software on Release 3 of the Portal

52

List of tables
Table 1. Checkpointing software overview .. 9

Table 2. Bottlenecks in the hardware and scalability for the application from social simulation

software stack according to the CoeGSS benchmarks ... 42

Table 3. Bottlenecks in the hardware and scalability for the application from large-scale CFD

applications according to the CoeGSS benchmarks ... 43

 D3.6 Documentation and Software on Release 3 of the Portal

53

List of figures
Figure 1. The graph presents the AVG matrix multiplication time for C++/MPI 11

Figure 2. The graph presents the AVG matrix multiplication time for C++/OpenMP 12

Figure 3. The graph presents the AVG matrix multiplication time for Python/MPI 12

Figure 4. The COVISE ReadPandora module ... 20

Figure 5. The COVISE GetSubset module .. 20

Figure 6. Typical setup of the RWCovise module .. 21

Figure 7. Distributed processing within COVISE .. 22

Figure 8. The TableUI standard view ... 23

Figure 9. Integration architecture ... 30

Figure 10. Submission page for HPC jobs .. 31

Figure 11. Performance of synthetic population generation (in seconds, median of 5 runs) 32

Figure 12. Scalability of Network Reconstruction tool - calculation time vs. number of agents

 .. 34

Figure 13. Scalability of Axelrod’s model implemented with the Amos framework and the

CoeGSS HDF5 extension library on Hazelhen cluster ... 40

Figure 14. Definition of the Compute element for the HLRS infrastructure 46

Figure 15. Definition of a single_job .. 47

Figure 16. Example of input variable .. 47

